52. Способы адресации
Прямая адресация
Это простейший вид адресации операнда в памяти, так как эффективный адрес содержится в самой команде и для его формирования не используется никаких дополнительных источников или регистров. Эффективный адрес берется непосредственно из поля смещения машинной команды, которое может иметь размер 8, 16, 32 бит. Это значение однозначно определяет байт, слово или двойное слово, расположенные в сегменте данных.
Прямая адресация может быть двух типов.
Относительная прямая адресация
Используется для команд условных переходов, для указания относительного адреса перехода. Относительность такого перехода заключается в том, что в поле смещения машинной команды содержится 8-, 16- или 32-битное значение, которое в результате работы команды будет складываться с содержимым регистра указателя команд ip/eip. В результате такого сложения получается адрес, по которому и осуществляется переход.
Абсолютная прямая адресация
В этом случае эффективный адрес является частью машинной команды, но формируется этот адрес только из значения поля смещения в команде. Для формирования физического адреса операнда в памяти микропроцессор складывает это поле со сдвинутым на 4 бита значением сегментного регистра. В команде ассемблера можно использовать несколько форм такой адресации.
Косвенная базовая (регистровая) адресация
При такой адресации эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме sp/esp и bp/ebp (это специфические регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки [].
Косвенная базовая (регистровая) адресация со смещением
Этот вид адресации является дополнением предыдущего и предназначен для доступа к данным с известным смещением относительно некоторого базового адреса. Этот вид адресации удобно использовать для доступа к элементам структур данных, когда смещение элементов известно заранее, на стадии разработки программы, а базовый (начальный) адрес структуры должен вычисляться динамически, на стадии выполнения программы.
Косвенная индексная адресация со смещением
Этот вид адресации очень похож на косвенную базовую адресацию со смещением. Здесь также для формирования эффективного адреса используется один из регистров общего назначения. Но индексная адресация обладает одной интересной особенностью, которая очень удобна для работы с массивами. Она связана с возможностью так называемого масштабирования содержимого индексного регистра.
Косвенная базовая индексная адресация
При этом виде адресации эффективный адрес формируется как сумма содержимого двух регистров общего назначения: базового и индексного. В качестве этих регистров могут применяться любые регистры общего назначения, при этом часто используется масштабирование содержимого индексного регистра.
Косвенная базовая индексная адресация со смещением
Этот вид адресации является дополнением косвенной индексной адресации. Эффективный адрес формируется как сумма трех составляющих: содержимого базового регистра, содержимого индексного регистра и значения поля смещения в команде.
Автор: Цветкова А.В.
<< Назад: Способы задания операндов команды
>> Вперед: Команды пересылки данных
Рекомендуем интересные статьи раздела Конспекты лекций, шпаргалки:
▪ Криминалистика. Конспект лекций
▪ Патологическая физиология. Шпаргалка
▪ Деньги. Кредит. Банки. Конспект лекций
Смотрите другие статьи раздела Конспекты лекций, шпаргалки.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Большой адронный коллайдер прекращает работу
16.01.2026
Физика элементарных частиц - одна из самых передовых областей науки, где каждый эксперимент может изменить наше понимание мироздания. Центральным инструментом этих исследований является Большой адронный коллайдер (LHC), уникальный ускоритель частиц, позволяющий изучать самые фундаментальные законы природы. Недавно стало известно, что LHC временно прекращает свою работу для масштабной модернизации, которая подготовит его к новому этапу экспериментов с гораздо большей производительностью.
Коллайдер, расположенный в подземном тоннеле вдоль швейцарско-французской границы, создает столкновения частиц на невероятно высоких энергиях. Именно здесь в 2012 году ученые открыли бозон Хиггса - ключевую частицу, объясняющую, почему другие элементарные частицы имеют массу. Это открытие стало одним из самых значимых событий современной физики и подтвердило предсказания Стандартной модели.
Причиной временной остановки LHC стало развертывание проекта High-Luminosity LHC (HL-LHC). Модернизация позв ...>>
Робот-бармен AI Barmen
16.01.2026
Американские инженеры создали AI Barmen - робота-бармена, способного не только готовить коктейли, но и запоминать предпочтения гостей.
AI Barmen представляет собой автономную систему, которую можно устанавливать практически в любых местах - от баров и ресторанов до гостиниц, аэропортов и корпоративных мероприятий. Робот сочетает механический манипулятор с интеллектуальной программой, которая подбирает напитки на основе истории заказов конкретного пользователя. Гости могут оставаться анонимными или разрешить системе запоминать их вкусы, что позволяет получать одинаково качественный персонализированный коктейль в любой точке, где установлен AI Barmen.
Робот готовит широкий спектр коктейлей с высокой точностью, контролирует запасы ингредиентов и автоматически ведет учет, что снижает затраты и минимизирует ошибки. Для работы устройства достаточно стандартной розетки, подключение к воде не требуется, что делает его мобильным и удобным для эксплуатации в самых разных условиях.
Систе ...>>
Стерильного нейтрино не существует
15.01.2026
В физике элементарных частиц поиск новых, пока не обнаруженных объектов играет ключевую роль в понимании устройства Вселенной. Иногда такие поиски приводят к громким открытиям, а иногда - к не менее важным отрицательным результатам, которые позволяют отбросить неверные направления. Именно к таким случаям относится недавний вывод ученых о судьбе стерильного нейтрино - одной из самых интригующих гипотетических частиц последних десятилетий.
Исследователи из американской лаборатории Fermilab официально сообщили, что им не удалось найти доказательства существования стерильного нейтрино. К такому выводу пришла команда эксперимента MicroBooNE после многолетнего анализа столкновений нейтрино, которые ранее рассматривались как возможный намек на существование четвертого типа этих частиц. Предполагалось, что стерильное нейтрино взаимодействует с материей исключительно через гравитацию, что делало его крайне трудным объектом для обнаружения.
В рамках современной физики нейтрино известны в т ...>>
Случайная новость из Архива Лазерная резка воды с использованием гидрофобных частиц
17.07.2023
Китайские ученые в области материаловедения обнаружили удивительную возможность резать обычную воду с помощью лазера. Исследование показало, что смесь воды с гидрофобными частицами диоксида кремния (кремнезема) позволяет создавать разнообразные узоры на поверхности воды под воздействием лазерного излучения, что может иметь важное значение для разработки микрожидкостных чипов.
Лазерная обработка материалов широко применяется в различных отраслях благодаря высокой точности и скорости работы. Однако применение лазера для резки воды представляло сложность из-за поверхностного натяжения, которое препятствует достижению необходимого давления для резки. Вода слишком текуча, что делает ее резку сложной. Однако возможность лазерной резки воды может иметь большое значение для разработки микрожидкостных чипов, применяемых в биомедицине, биологии, аналитической химии и фармацевтике.
Ученые из Университета Сиань Цзяотун вместе с коллегами обнаружили решение этой проблемы. Они выяснили, что добавление гидрофобных наночастиц диоксида кремния в воду позволяет ей подвергаться лазерной резке при использовании лазерного излучения длиной волны 10,6 микрометра. Гидрофобные частицы изменяют текучесть воды и ее пропускную способность света, что обеспечивает эффективное поглощение лазерного излучения и деформацию. Поглощенное частицами тепло передается воде, вызывая ее испарение. Вода вокруг перемещается вместе с гидрофобными частицами, закрывая место резки.
Важно, чтобы скорость испарения воды превышала скорость ее пополнения в зоне воздействия лазера. Поэтому для успешной резки гидрофобные наночастицы должны составлять около 5 процентов от общего объема. В ходе экспериментов ученые смогли создавать разнообразные формы с высокой точностью резки в пределах 200 микрометров и создавать каналы из различных жидкостей, что является необходимым условием для микрожидкостных технологий. Созданные формы сохраняют свою структуру после резки.
|
Другие интересные новости:
▪ Вместо бумажных книг - электронные
▪ Мягкие роботы, подобные насекомым
▪ Парниковый эффект - в парники
▪ Дом на воде
▪ Энергия из воздуха подзарядит смартфон
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Электрические счетчики. Подборка статей
▪ статья Венерические заболевания. Основы безопасной жизнедеятельности
▪ статья Чем отличается дирижабль от воздушного шара? Подробный ответ
▪ статья Ориентирование по звездам. Советы туристу
▪ статья Средства визуального контроля. Энциклопедия радиоэлектроники и электротехники
▪ статья Теледиапроектор. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2026