Инвертированные во времени оптические волны
31.12.2020
Группа исследователей из университета Квинсленда и лаборатории Nokia Bell Labs разработала новый метод, позволяющий получать инвертированные во времени оптические волны. Временное инвертирование в физике вовсе не означает возможности путешествия "назад в будущее". Этот термин описывает специальный тип волны, которая может пройти через какой-нибудь объект назад точно по пути, проделанному первой, не инвертированной волной. Это похоже на съемку распространения волны, проигрываемую в обратном направлении, и такой метод может быть использован в совершенно новых технологиях съемки, в коммуникационных и других технологиях, связанных с движением света в различных средах.
"Представьте себе короткий световой импульс, движущийся от точечного источника света до объекта, состоящего из рассеивающего материала, к примеру, тумана" - поясняют суть своего достижения исследователи, - "Когда свет добирается до тумана, он рассеивается, дробясь на множество лучей, которые прибывают в различные точки пространства в различные моменты времени. Наша технология позволяет очень точно измерить все аспекты подобного рассеянного света и создать его "обращенный" вариант, который, пройдя через туман, "соберется" в изначальный единичный импульс, излученный источником".
Технология, реализованная учеными, достаточно сложна и в ней задействовано множество уникальных оптических компонентов, позволяющих рассматривать импульс света как 3D-объект, входящий в систему, отслеживать преобразования структуры этого объекта и создать другой 3D-объект, который пройдя сквозь систему в обратном направлении, приобретет изначальную структуру первого.
"Все это должно производиться во временных рамках, измеряемых триллионными долями секунды. Таким образом, в данной технологии не может быть использована никакая механическая система с движущимися частями, ни система, в которой используются электрические сигналы" - пишут исследователи, - "Поэтому все "вычисления" и преобразования выполняются на аппаратном оптическом уровне и наш метод является первым в истории науки, который позволяет производить подобные манипуляции с лучом света".
Максимально точное управление формой и структурой импульса света имеет чрезвычайно важное значение для многих областей науки и техники, начиная от новых технологий съемки, нелинейной микроскопии, квантовой оптики, нанофотоники, плазмоники и заканчивая созданием лучей лазерного света сверхвысокой интенсивности. Более того, при помощи нового устройства ученые получили возможность проведения научных экспериментов, которые ранее были возможны только в теории.
<< Назад: Дроны для поиска людей, потерявшихся в лесу 31.12.2020
>> Вперед: Ворон не уступает примату в умственных способностях 30.12.2020
Последние новости науки и техники, новинки электроники:
Впервые преоодолена передача ВИЧ от матери к ребенку
02.01.2026
Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата.
Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности.
Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>
Нанослой германия увеличивает эффективность солнечных батарей на треть
02.01.2026
Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств.
Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам.
Для решения этих проблем ученые предлож ...>>
Электростатическое решение для борьбы с льдом и инеем
01.01.2026
Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта.
Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей.
Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>
Древний лед Антарктики
01.01.2026
Изучение древних ледниковых слоев - один из самых надежных способов понять, как формировался климат Земли и как он может изменяться в будущем. Недавнее открытие международной группы исследователей в Антарктике дает уникальную возможность заглянуть на миллионы лет назад и получить ценную информацию о атмосфере нашей планеты.
В районе Аллан-Хиллс ученые пробурили керны древнего льда и обнаружили слои, возраст которых оценивается примерно в 6 миллионов лет. Это старейший лед, когда-либо найденный на Земле и датированный напрямую, что делает находку беспрецедентной в истории климатологии.
Особое значение имеют крошечные пузырьки воздуха, запечатленные в ледяных кристаллах. Они служат настоящими "капсулами времени", сохраняя состав атмосферы прошлого. Анализ этих пузырьков позволяет восстановить климатические условия древней Земли, когда средние температуры были выше современных, а уровень океанов значительно выше нынешнего.
Древние ледяные керны можно рассматривать как подробные х ...>>
Нано-уровень управления светом
31.12.2025
Современная нанофотоника стремится превратить свет в инструмент точного управления на микроскопическом уровне. Недавние исследования международной команды ученых открывают новые возможности в этой области, позволяя манипулировать светоматериальными волнами на наноуровне с беспрецедентной точностью. Такие достижения могут стать ключом к созданию сверхбыстрых коммуникационных систем и высокочувствительных сенсоров.
В центре внимания исследователей оказались гиперболические фонон-поляритоны - особый тип волн, возникающих при взаимодействии света с колебаниями вещества. Эти волны способны концентрировать свет в пространственных масштабах, значительно меньших длины его волны, что позволяет создавать устройства с высокой плотностью интеграции и повышенной функциональностью.
Работа велась совместно учеными из Шанхайского транспортного университета, Национального центра нанонауки и технологий Китая, а также коллегами из Испании. Они предложили двухэтапную схему возбуждения волн: сначала ...>>
Случайная новость из Архива Самый маленький лазер
03.10.2010
Швейцарские инженеры из Высшей политехнической школы в Цюрихе создали самый маленький лазер в мире, причем его длина меньше, чем длина волны излучаемого им света: 30 микрометров против 200 (это инфракрасная область).
Новое устройство можно встраивать в электронные микросхемы, необходимые для фотонных компьютеров близкого будущего.
|
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025