Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Градуировка волномеров для коротких волн. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

О необходимости иметь волномер каждому, кто работает с короткими волнами, распространяться не приходится.

Также очевидно, что волномер должен быть возможно точно проградуирован, ибо в противном случае он может лишь вводить в заблуждение.

Точность градуировки, вполне достаточная для любителя, должна выражаться, примерно, десятыми долями процента.

Наиболее простой и весьма точный способ градуировки - это градуировка с помощью системы Лехера.

Многим этот способ уже известен, но, как показывает практика, недостаточно знать метод или способ: необходим еще некоторый навык, или если его нет, то знание некоторых деталей, при которых охваченный способ может дать нужные результаты.

Целью настоящей статьи и является сообщение тех немногих приемов и сведений, которые, по возможности, устранят все причины, могущие дать неправильную градуировку.

Повторим кратко сущность способа градуировки.

Собирают генератор Г (см. рис. 1) или, что то же самое - передатчик по какой-либо схеме. Приведя его в действие, мы получим в нем колебания с некоторой, неизвестной нам длиной волны. С генератором, через катушку связи L, связываются два провода Л, образующих систему Лехера. Через связь по проводам Лехера будут распространяться те же волны, которыми колеблется генератор. Если теперь в начале системы Лехера поставить какой-либо индикатор или указатель резонанса Р, связав его с системой Лехера, и от катушки L вправо передвигать но проводам металлическую перемычку - мост М, то можно будет найти такую точку а, в которой: 1) отрезок L - а будет настроен в резонанс с генератором, что покажет наибольшее отклонение стрелки прибора Р, 2) в отрезке возникает стоячая волна (Подробно со стоячими волнами читатели уже ознакомлены из специальных статей, помещенных в отделе "Короткие волны" в цикле "Элементы радиотехники"), причем пучности тока всегда будут в катушке L и у моста М, 3) на длине отрезка от середины катушки L до точки а расположится полуволна генератора.

Градуировка волномеров для коротких волн
Рис. 1. Генератор с системой Лехера

Следовательно, если измерить теперь в метрах длину отрезка от середины катушки L до моста и полученную величину умножить на два, то мы определим в метрах длину волны, которой колеблется генератор. А настроив на генератор волномер мы получим на его шкале деление, которому будет соответствовать определенная нами волна. Но здесь встает затруднение точно определить влияние катушки L на длину отрезка L - а, так как катушка L укорачивает длину отрезка на некоторую большую величину, чем длина проволоки самой катушки. Поэтому на практике поступают так: определив место моста при первом резонансе, т. е. точку а, передвигают мост дальше и ищут точку б, при которой индикатор Р покажет второй резонанс.

На отрезке Лехера L - а - б укладывается как раз целая длина волны, но нас интересует отрезок аб, на котором укладывается точно половина волны. Этот отрезок можно измерить точно (т. к. здесь учитывать влияния катушки L не приходится) и, следовательно, точно узнать длину волны, на которую настроен генератор.

Далее, изменяя понемногу длину волны генератора и определяя ее величину описанным выше образом, мы сможем получить для волномера ряд делений конденсатора и соответствующих им длин волн, по которым и строится график длин волн.

Теперь, вспомнив метод, перейдем к деталям.

Генератор. Схема генератора может быть взята любая, но наиболее удобная и простая - это трехточечная. Если есть возможность применить две лампы, то схема применяется трехточечная сдвоенная (см., напр. "Р.В." стр. 510 - 511 №21 за 1927 г.). Мощность генератора должна быть возможно больше, так как тогда он будет меньше подвергаться влиянию расстройки. Но всяком случае не следует применять ламп, мощность которых меньше 10-15 ватт.

Генератор должен быть проверен, чтобы на всем нужном диапазоне волн колебания получались устойчивыми и достаточной мощности (отсутствие провалов колебаний).

Лехерова система собирается из голых медных или бронзовых проводов, диаметрам в 1 или лучше - 1,5 мм. Расстояние между проводами лучше всего брать в 5 сантиметров. Длина проводов должна быть несколько больше половины наибольший длины волны, на которую хотят проградуировать волномер.

Как сказано выше, катушка L укорачивает длину Лехера l1, на которой укладывается первая половина волны. Если параллельно катушке включить переменный воздушный конденсатор С, показанный на рис. 1 пунктиром, то этим длина l1, еще более укоротится, т. е. первое положение моста М будет недалеко от катушки L и следовательно вся длина Лехера для самой наибольшей волны будет 0,6-0,7 ее длины, вместо двойной.

Например, желая проградуировать волномер до 50 метров, надо взять длину Лехеровой системы в 30-35 метров.

Следует обратить внимание на хорошую изоляцию катушки и проводов системы.- Конец системы за мостом (на рис. 1 - правый) может быть и не изолирован.

Крепление Лехеровой системы должно быть прочное и жесткое. Удобно воспользоваться кольями с пропарафинированными досочками, в вырезы которых закладываются провода (см. рис. 2).

Градуировка волномеров для коротких волн
Рис. 2. Подвеска Лехеровой системы

Катушка связи L обычно состоит из 2 или нескольких витков. Связь ее с генератором должна быть возможно меньшей, при которой все же можно наблюдать показания прибора - индикатора. При сильной связи точность градуировки будет меньше, особенно если генератор недостаточно мощен.

После подбора соответствующей связи катушка L должна быть закреплена совершенно прочно, чтобы передвижения моста М не могли бы шевелить ее и таким образом не изменяли бы связи.

Мост. Нами уже выяснено действие катушки L на установление длины волны в отрезке Лехера. Поэтому, если мост будет обладать самоиндукцией, то он также будет уменьшать точность определения волны. Поэтому будет хорош мост следующей конструкции (см. рис. 3): к двум латунным уголкам У припаивают две латунных или медных пластинки П, имеющих полукруглую или прямоугольную форму. Через уголки пропускают болтик о гайкой, чем и производится прочное соединение моста с проводами Лехера. Полезно для проводов сделать небольшие углубления. Для передвижения моста следует слегка ослабить гайку болта.

На рис. 3 показаны и другие варианты устройства мостов. Пружина под гайкой будет весьма полезна: она даст возможность при постоянном хорошем контакте легко передвигать мост.

Градуировка волномеров для коротких волн
Рис. 3. Устройство мостов

Индикатор, или указатель резонанса, должен быть возможно чувствительнее. Чем меньше он потребляет на себя энергии, тем точнее будет градуировка.

В любительской практике лучше всего для этого использовать гальванометр с детектором (см. рис. 4). Если нет гальванометра, можно взять милли-амперметр, но на небольшие милли-амперы (не больше 10 м/а). Так как милли-амперметр обычно имеет небольшое сопротивление, то и детектор полезно брать с небольшим сопротивлением, например, халькопирит, цинкит и т. п. Для связи прибора с Лехером делают рамку - виток из голой проволоки в 1,5-2 мм толщиной. Наконец, прибор полезно зашунтировать конденсатором, емкость которого равна 200-500 см.

Градуировка волномеров для коротких волн
Рис. 4. Общий вид и схема индикатора резонанса

Для связи с Лехером индикатор устанавливают в начале Лехера (Примерно около первой пучности тока, но так, чтоб индикатор действовал от Лехера, но не от генератора непосредственно) так, чтобы верх рамки был параллелен одному из проводов Лехера. Расстояние между Лехером и рамкой должно быть по возможности больше (20-40 см), но, конечно, такое, при котором будет заметно отклонение стрелки прибора.

Общее расположение всех приборов видно на рис. 5.

Градуировка волномеров для коротких волн
Рис. 5. Расположение приборов при градуировке

Порядок работ такой: собрав всю схему, пускают в действие генератор и устанавливают в нем такую наиболее короткую волну, на какую должен быть проградуирован и волномер. Волномер должен ловить эту волну при первых градусах своего конденсатора. Затем делают предварительное определение положений моста, т. е. находят точки а и б. Работу удобнее вести двум лицам.

В то время как один наблюдатель, связав, для начала, сильной связью индикатор, наблюдает за его стрелкой, второй участник градуировки, установив сжатие моста таким, чтобы при осуществлении хорошего контакта мост можно было передвигать по проволокам, берется за его середину и ведет очень плавно и медленно в направлении от генератора вправо. При этом работающий должен сам находиться всегда C3ади моста, т. е. между мостом и свободным концом Лехеровой системы, чтобы своим телом не влиять на Лехера и, следовательно, на настройку.

При некотором положении моста наступает первый резонанс. Резонанс обычно острый и его легко пройти не заметив, почему, для начала, и берут связь индикатора с Лехером посильнее.

Найдя первую точку, замечают ее на земле либо чертой, либо колышком и передвигают мост дальше.

Второй резонанс бывает еще острее, и отклонение прибора бывает меньшее. Обычно достаточно передвинуть мост с точки резонанса на 2-3 миллиметра, как резонанс может быть уже пройден.

Найдя вторую точку, отмечают ее и приступают к градуировке так:

Изгибают рамку индикатора так, как это показано пунктиром на рис. 5. Рамку связывает с Лехером около первой точки, но так, чтобы индикатор находился левее ее. Затем наблюдатель, глядя на шкалу индикатора, которая теперь обращена к нему, становится C3ади моста и, двигая его вперед или назад, точно находит место резонанса. Тут же подбирается такая наиболее слабая связь индикатора с системой Лехера, при которой наблюдение производится легко.

Установив мост в точке резонанса, опускают вниз отвес и точно отмечают на земле точку №1 (см. рис. 6). Затем переносят прибор и мост к точке второго резонанса и здесь, действуя так же (и при слабой связи), определяют точку №2.

Градуировка волномеров для коротких волн
Рис. 6. Расположение моста но системе Лехера при градуировке

Измеряют расстояние между точками №1 и №2, множат на два и получают длину волны Лехера, а следовательно и генератора.

Связывают градуируемый волномер с генератором весьма слабо и настраивают его на волну генератора, после чего записывают градусы конденсатора в соответствующую им длину волны.

При сильной связи волномера с генератором последней может расстроиться и дать таким образом неправильное намерение.

Затем немного увеличивают длину волны генератора, настраивают волномер, убеждаются, что стрелка его конденсатора передвинулась на 15-20 градусов, переносят индикатор Р и мост в место, находящееся несколько правее точки №1, и по предыдущему, при слабой связи, находят точку первого резонанса второй волны генератора - №3.

Если мы измерим расстояние между точками №1 и 3, равное а, и удвоенную его величину 2а отложим от точки №2 вправо, то мы сразу найдем место, где должно установить индикатор и мост и искать точку второго резонанса второй волны. Найдя точно это место, получаем точку №4. Измерив расстояние между точками № 3-4 и умножив его на два, получаем вторую волну генератора. Подстраиваем волномер точно на эту волну и т. д. и т.д.

Подобным методом можно произвести градуировку волномера, начиная от самых коротких (доли метра) волн.

Если имеется точный волномер, то градуировку сделанного волномера производят так: пускают в действие генератор и, устанавливая в нем разные длины волн, измеряют их при слабой связи точным волномером, после чего при слабой же связи настраивают на генератор градуируемый волномер и определяют таким образом волны для ряда точек конденсатора.

Независимо от того, каким образом градуируют волномер, число определений длин волн (точек на конденсаторе) следует делать побольше, например 10 (т. е. градусов через 15-20), так как в противном случае кривая графика может быть вычерчена не вполне точно.

Автор: С.И.Шапошников

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Моховая губка для сбора нефти из воды 24.04.2025

Разливы нефти продолжают оставаться одной из самых опасных угроз для экосистем океанов и пресной воды. Эти инциденты не только нарушают баланс водной среды, но и наносят долгосрочный ущерб флоре, фауне и местному населению. В поисках эффективных и экологичных решений ученые со всего мира работают над технологиями, способными быстро и безопасно устранять последствия таких катастроф. Одним из самых перспективных достижений в этой области стала новая разработка китайских исследователей из Университета образования Гуйчжоу. Команда ученых сфокусировала свои усилия на использовании природного ресурса - мха сфагнума, широко распространенного и известного своей способностью удерживать влагу. Однако специалисты пошли дальше: они модифицировали поверхность мха с помощью доступных химических реагентов, добившись того, что материал стал эффективно впитывать нефтепродукты, одновременно отталкивая воду. Такая селективность делает его особенно подходящим для применения при очистке загрязненных вод ...>>

Круглый ветрогенератор Windgate для домов 24.04.2025

Владельцы частных домов все чаще обращают внимание на альтернативные способы генерации электричества. Одним из перспективных направлений остается ветроэнергетика, но ее внедрение в бытовые условия сталкивается с рядом трудностей. Среди них - недостаточная скорость ветра в жилых районах, шум от работы турбин и высокая стоимость установки оборудования. Однако американская компания Honeywell вместе с EarthTronics представила решение, способное преодолеть эти барьеры - круглый ветрогенератор Windgate. Инженеры предложили инновационный подход, отказавшись от классической конструкции турбины с зубчатой ступицей. Вместо этого Windgate использует технологию Blade Tip Power System: генерация электроэнергии осуществляется за счет постоянных магнитов, установленных по краям лопастей и на ободке ротора. Такой подход позволяет значительно снизить механическое сопротивление и производить энергию даже при скорости ветра всего 0,8 метра в секунду, в то время как стандартные турбины требуют как мини ...>>

Вороны разбираются в геометрии 23.04.2025

Ученые все чаще пересматривают свои взгляды на интеллектуальные способности животных. Оказывается, некоторые виды демонстрируют куда более сложное поведение, чем считалось ранее. Одним из поразительных открытий последних месяцев стало доказательство того, что черные вороны способны воспринимать геометрические закономерности. Исследование, проведенное специалистами из Тюбингенского университета в Германии, показало: эти птицы обладают зачатками пространственного мышления, характерного прежде всего для человека. Опыты, позволившие прийти к таким выводам, проводились с участием обученных черных ворон, которым демонстрировали различные геометрические формы на экране. Исследователи ставили перед птицами задачу распознать фигуру, которая выбивается из общего ряда. Причем отличие могло быть как броским - например, звезда среди квадратов, - так и едва заметным, вроде небольшого наклона одной из фигур. За правильный выбор ворона получала вознаграждение в виде лакомства. Примечательно, что ...>>

Случайная новость из Архива

Нанопроволока вместо жесткого диска 03.01.2022

Международная группа ученых во главе с Кавендишской лабораторией Кембриджского университета использовала передовую технику 3D-печати для создания двойных магнитных спиралей, служащих носителями информации. Исследователи обнаружили, что они создают топологические текстуры нанометрового масштаба в магнитном поле. Ранее такое явление никем не было зафиксировано, и первооткрыватели полагают, что скрученная нанопроволока может стать "родоначальницей" магнитных устройств следующего поколения.

Магниты широко используются в устройствах хранения данных и в вычислительных системах. Минус последних в том, что точки намагниченности в них являются структурами двухмерными. А вот нанопроволочная архитектура является трехмерной, благодаря чему можно более высокой плотности записи, а также изменять магнитные свойства устройства и существенно расширить его функциональные возможности.

До сих пор эту идею было очень трудно реализовать, потому что у ученых не было возможности создавать трехмерные магнитные системы. Поэтому в течение последних нескольких лет исследования Международной группы были сосредоточены на разработке новых методов визуализации трехмерных магнитных структур и технологии 3D-печати магнитных материалов.

Используя передовые методы рентгеновской визуализации (мягкую рентгеновскую ламинографию), исследователи обнаружили, что трехмерная структура, вроде структуры ДНК, приводит к формированию абсолютной иной текстуры намагниченности, по сравнению с текстурой 2D-структур.

Стенки магнитных доменов (областей, где намагничивание сосредоточено в одном направлении) соседних спиралей находятся очень близко друг к другу, также они деформированы, потому как нанопроволоки переплетены. Под действием магнитного поля эти стенки еще больше притягиваются друг к другу, вращаются, а затем "фиксируются" и образуют прочные регулярные связи, подобные парам оснований в ДНК.

Магнитные спирали дают исследователям возможность моделировать магнитное поле в наномасштабе и, в последствии, контролировать силу поля.

В привычных жестких дисках магнитные домены на пластинах рассматриваются как двухмерные структуры - островки намагниченности. Международная группа ученых представила работу по изучению магнитных свойств трехмерных объектов. Переход от условно плоских магнитных полей для записи данных к объемным полям открывает путь для значительного увеличения плотности записи. Нас может удивить то, что придет на смену жестким дискам.

Плотность расположения магнитных доменов на пластинах HDD приближается к своему пределу. Соседние островки намагниченности начинают влиять друг на друга и разрушают намагниченность (записанные данные). Чтобы этому противостоять в ход идут передовые технологии HAMR и MAMR (локальный нагрев и микроволновое воздействие), которые помогают преодолеть коэрцитивную силу и записать данные без потери намагниченности. Но всему есть предел, поэтому параллельно ведутся поиски альтернатив, одна из которых нацелена на разработку так называемой трековой или беговой памяти.

Другие интересные новости:

▪ Операция при светодиодах

▪ Полностью электрический вездеход Bollinger B1

▪ Нейроны в глазу человека умеют корректировать ошибки

▪ Гелиолодка

▪ Летающий автомобиль

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Строителю, домашнему мастеру. Подборка статей

▪ статья Ходить с фонарем Диогена. Крылатое выражение

▪ статья Кто изобрел стенографию? Подробный ответ

▪ статья Боярышник кровяно-красный. Легенды, выращивание, способы применения

▪ статья Дельта от 10 до 40 метров. Энциклопедия радиоэлектроники и электротехники

▪ статья Таинственная надпись. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025