Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лехерова линия. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

В электронике Лехеровыми линиями или Лехеровой системой называются пары параллельных проводов или стержней, с помощью которых измеряют длину радиоволн в основном на УВЧ и СВЧ диапазонах. Эти провода образуют короткую сбалансированную линию передачи. При подключении к источнику высокочастотной энергии, например, к радиопередатчику, радиоволны образуют стоячие волны по всей длине линии передачи. Передвигая токопроводящую перемычку (мостик), соединяющую накоротко оба провода системы, можно физически измерить длину волны.

Австрийский физик Эрнст Лехер, усовершенствуя методы, используемые Оливером Лоджем и Генрихом Герцем, разработал примерно в 1888 году свой метод измерения длины волны. Сегодня доступны более совершенные методы измерения частоты, и Лехерова линия в настоящее время чаще всего используются в качестве элементов схемы при использовании в высокочастотном оборудовании, например, в телевизорах, Лехерова линия используется в качестве резонансных контуров, в узкополосных фильтрах и в устройствах согласования импедансов. Она используются на частотах, лежащих между КВ/УКВ диапазонами, там где используются сосредоточенные компоненты, и на диапазонах УВЧ/СВЧ, где применяются объемные резонаторы.

Измерение длины волны

Линия Лехера является парой параллельных неизолированных проводов или стержней, находящихся на фиксированном расстояние друг от друга. Расстояние между проводниками не является критическим, но оно должно составлять небольшую часть длины волны. Это расстояние может находится в пределах от менее чем сантиметра до 10 см и более. Длина проводов зависит от действующей длины волны; линии, которые используются для измерений, имеют длину, как правило, в несколько раз большую измеряемой длины волны. Равномерное расстояние между проводами делает из них линии передачи, передающие радиоволны с постоянной скоростью, очень близкой к скорости света. Один конец линии соединен с источником ВЧ сигнала, например, с выходом радиопередатчика. Другой конец линии соединен накоротко через подвижный проводник. Эта замыкающая перемычка отражает волны. Отраженные от короткозамкнутого конца линии волны взаимодействуют с приходящими волнами, создавая синусоидальные стоячие волны напряжения и тока на линии. Напряжение падает до нуля в узлах, расположенных на расстоянии, кратном половине длины волны от конца линии. Максимумы напряжения, называемые пучностями, расположены на полпути между узлами. Поэтому длина волны λ может быть определена путем нахождения двух последовательных узлов (или пучностей) и измерения расстояния между ними, которое нужно умножить на два. Частота F может быть рассчитана, если известна длина волны и ее скорость, и если известна скорость света C:

F = C / λ

Для измерений обычно используются узлы, так как они проявляются более острее, чем пучности, соответственно и точность измерений будет выше.

Поиск узлов

Для поиска узлов применяются два метода. Один из них заключается в использовании индикаторов напряжения, таких как ВЧ вольтметр или простой лампочки накаливания, прикрепленной к паре контактов, скользящих вверх и вниз по проводам. Когда лампочка достигает узла, напряжение между проводами становится равным нулю, поэтому лампа гаснет. Одним из недостатков этого метода является то, что индикатор может воздействовать на стоячую волну на линии, что приводит к ее переотражению. Чтобы предотвратить это, необходимо использовать индикатор с высоким входным сопротивлением; обычная лампа накаливания слишком низкоомна. Лехер и другие исследователи использовали длинные тонкие трубки Гейслера (рис. 1.), стеклянная колба которых помещалась непосредственно на линию. В старых передатчиках высокое напряжение возбуждало тлеющей разряд в газе. В наше время часто используют небольшие неоновые лампы. Одна из проблем с использованием ламп тлеющего разряда является их высокое напряжение зажигания, затрудняющее точную локализацию минимального напряжения. В точных измерителях длины волны используют ВЧ вольтметр.

Другой метод использующийся для поиска узлов заключается в перемещении замыкающего мостика вдоль линии и измерении ВЧ тока, протекающего в линии с помощью ВЧ амперметра, включенного в фидерную линию. Ток в Лехеровой линии, как и напряжение, образует стоячие волны с узлами (точки минимального тока) через каждую половину длины волны. Так как линия представляет собой импеданс для питающего ее источника ВЧ энергии, и этот импеданс меняется в зависимости от длины линии. Когда узел тока расположен в начале линии, то ток, потребляемый от источника, будет минимальным, что и покажет амперметр. Если двигать замыкающий мостик дальше по линии и отметить два места с минимальным током, то расстояние между этими двумя минимумами и будет равно половине длины волны.

Лехерова линия
Рис. 1. Линия Лехера образца 1902 года, идентичная оригинальной конструкции 1888 года Эрнста Лехера

Радиоволны, создаваемые генератором на основе разрядника Герца (на рисунке справа) двигаются вдоль параллельных проводов. Провода замкнуты между собой (на рисунке с левой стороны), отражаемые волны бегут обратно по проводам в сторону генератора, создавая стоячие волны напряжения вдоль линии. Напряжение стремится к нулю в узлами, расположенных на расстоянии, кратном половине длины волны от конца линии. Узлы были найдены путем перемещения трубки Гейслера - маленькаой трубки тлеющего разряда, типа неоновой лампы, вдоль линии (две из этих ламп них показаны на рисунке). Высокое напряжение на линии заставляет трубку светиться. Когда трубка достигает узла, то напряжение стремится к нулю, и трубка гаснет. Измеренное расстояние между двумя соседними узлами умножается на два, что дает длину волны λ. На рисунке линия показана укороченной; на самом длина линии была 6 метров. Радиоволны, производимые геенратором, лежали были в УКВ-диапазоне и имели длину волны несколько метров. На вставке показаны типы труб Гейслера использоваться с Lecher линий.

Конструкция

Главная привлекательность линии Лехера заключается в том, что с ее помощью можно измерить частоту без использования сложной электроники, и линия может быть легко собрана из простых материалов, продаваемых в обычном магазине. Лехерова линия для измерения длины волны как правило строится на каркасе, на котором жестко крепятся горизонтально расположенные проводники, по которым передвигается замыкающий мостик или индикатор, и измерительной шкалы, по которой определяется расстояние между узлами. Каркас, как правило, изготовлен из непроводящих материалов, таких как дерево, потому что любые проводящие объекты вблизи линии можгут нарушать режим стоячей волны.

Во многих отношениях линия Лехера является электрической версией эксперимента с трубкой Кундта, которая используется для измерения длины звуковых волн.

Измерение скорости света

Если частота F радиоволны известна, то измерив длину волны λ с помощью линии Лехера можно рассчитать скорость волны C, которая примерно равна скорости света:

C = λ*F

В 1891 году французский физик Проспер-Рене Блондло применяя этот метод произвел первые измерения скорости распространения радиоволн. Он использовал 13 различных частот между 10 и 30 МГц и получил среднее значение 297600 км/сек, полученный результат находится в пределах 1% от истинного значения скорости света. Это было важным подтверждением теории Джеймса Клерка Максвелла о том, что свет тоже является электромагнитной волной, как и радиоволны.

Применение в других областях

Короткие Лехеровы линии часто используются в качестве высокодобротных резонансных контуров, которые называют настроечными или резонансными шлейфами. Например, четвертьволновая (λ / 4) короткая линия Лехера действует как параллельный резонансный контур, имея высокое сопротивление на своей резонансной частоте и низкий импеданс на других частотах. Она используются из-за того, что на частотах дециметрового диапазона (10 см...1 м) в резонансных схемах требуются индуктивности и емкости малой величины, что затрудняет их изготовление и к тому же они очень чувствительны к паразитным емкостям и индуктивностям. Единственное различие между замкнутыми линиями передачи и обычными LC контурами заключается в том, что замкнутая линия передачи (резонансный шлейф), например Лехерова линия имеет несколько резонансов на нечетных частотах, кратных основной резонансной частоте, а сосредоточенные LC цепи имеют только одну резонансную частоту.

Питание усилителей мощности высокой частоты

Лехеровы линии могут применяться для резонансных цепей в СВЧ усилителях мощности.] Например, усилитель на двойном тетроде (QQV03-20) на частоту 432 МГц описан Г. Р. Джессопом в справочнике (G.R. Jessop, VHF UHF manual, RSGB, Potters Bar, 1983), использует линию Лехера в анодной цепи в качестве резонансного контура.

Лехерова линия
Рис. 2. Использование линии Лехера в качестве резонансного контура

Телевизионные тюнеры

Четвертьволновые линии Лехера используются в резонансных цепях в усилителях ВЧ и в гетеродинах у некоторых моделей современных телевизоров. Настройка на различные телестанции осуществляется с помощью варикапа, подключенного к обоим проводникам линии Лехера.

Волновое сопротивление линии Лехера

Расстояние между проводниками Лехеровой системы не влияет на положение стоячих волн на линии, но оно определяет волновое сопротивление, которое может быть важным для согласования линии с источником высокочастотной энергии для эффективной передачи мощности. Для двух параллельных цилиндрических проводников диаметром d и расстоянием между ними D Волновое сопротивление линии будет равно:

Для параллельных проводов формула для емкости где L - длина, С - емкость на метр

Откуда

Имеющиеся в продаже 300 и 450 Ом ленточные кабели (например, телефонная двухпроводная линия типа "лапша") может быть использованы в качестве линий Лехера с фиксированной длиной (резонансный шлейф).

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Роботизированные кроссовки Sidekick 18.01.2026

Американский стартап Dephy представил инновационные кроссовки Sidekick с электроприводом, которые работают как дополнительная икроножная мышца, помогая пользователю быстрее перемещаться и меньше уставать. Sidekick представляет собой сочетание обуви и мини-экзоскелета, встроенного в область косточки. За счет электропривода кроссовки поддерживают движение стопы и усиливают сокращение икроножных мышц, снижая нагрузку на ноги. Это позволяет ходить дольше и с меньшей усталостью, особенно при длительных прогулках или активной работе на ногах. В отличие от многих носимых устройств, для работы Sidekick не требуется установка приложений или индивидуальная калибровка. Кроссовки автоматически подстраиваются под шаг и особенности движения владельца, обеспечивая комфорт и простоту использования с первого надевания. Комплект включает в себя сам экзоскелет на косточку и пару кроссовок, доступных в белом и черном цвете. Устройство питается от аккумуляторов, что делает его автономным и готовым ...>>

Поющий леденец Lollipop Sta 18.01.2026

Компания Lava представила Lollipop Star - леденец на палочке, способный воспроизводить музыку через костную проводимость, прямо "в голове" пользователя. Особенность устройства заключается в том, что звук передается не через воздух, как у традиционных динамиков, а через вибрации челюсти. Пользователь должен прикусить леденец задними коренными зубами: электронный модуль в палочке преобразует вибрации в звук, который достигает внутреннего уха. Таким образом, поедание конфеты превращается в необычный аудиофеномен. Съедобная часть леденца соединена с небольшим электронным модулем в ручке, где расположены кнопка включения и механизм вибрации. После активации звуковой сигнал передается через костную проводимость, создавая эффект музыки "внутри головы". Ориентировочная цена продукта составляет 8,99 долларов, а в продажу он поступит после завершения CES. На старте продаж Lollipop Star будет доступен в трех вкусах, каждый из которых ассоциирован с определенной песней и исполнителем. Пер ...>>

Интерактивная система Lego Smart Play 17.01.2026

Компания Lego предложила новый подход к конструкторским играм, представив платформу Smart Play, которая объединяет традиционные кирпичики с сенсорами, звуками и возможностью реагировать на действия ребенка. Разработка системы заняла около восьми лет и направлена на поддержку социальной, сюжетной и творческой игры. Главная идея Smart Play заключается в том, чтобы "спрятать" сложную электронику внутри конструкции. Это позволяет детям сосредотачиваться не на гаджетах, а на создании историй, взаимодействии с персонажами и собственной фантазии. Технология ориентирована на развитие творческого мышления и вовлечение в игру с самого начала. Система базируется на специальном "умном кирпиче", оснащенном датчиками, который способен реагировать на движение, воспроизводить звуки и распознавать другие элементы конструктора, включая умные минифигурки. Дополнительные Tiny Smart Tags позволяют платформе понимать контекст использования кирпичей: например, находится ли элемент в машине, вертолете и ...>>

Случайная новость из Архива

Вода, прошедшая очистку, может стать токсичной 29.04.2025

Исследования ученых из Калифорнийского университета в Беркли и Университета Джона Хопкинса в Балтиморе ставят под сомнение безопасность стандартных методов очищения воды. Исследования показали, что привычные способы очистки могут не только не избавлять воду от токсичных веществ, но и трансформировать их в более опасные соединения.

В ходе своего исследования ученые пришли к выводу, что большинство современных методов очистки воды не уничтожают вредные вещества. Наоборот, в процессе обработки воды химические компоненты могут претерпевать изменения, превращаясь в еще более опасные молекулы. Это открытие вызывает тревогу, так как мы полагаемся на эти методы, чтобы получить безопасную воду, однако на деле очищенная жидкость может оказаться более токсичной.

Одним из ярких примеров этого явления является фенол - химическое вещество, широко использующееся в промышленности. Он часто встречается в воде, загрязненной отходами промышленных предприятий. При очистке воды фенол подвергается химическим изменениям, что приводит к образованию более токсичных соединений. Это подчеркивает важность глубокого понимания процессов, происходящих во время очистки, и необходимости разработки более безопасных методов.

По словам одного из ведущих авторов исследования, доктора Карстена Прасса, "в процессе очистки воды действительно могут образовываться вредные вещества, и в некоторых случаях они оказываются значительно более токсичными". Это открытие ставит под сомнение эффективность традиционных методов очистки, таких как фильтрация, хлорирование или ультрафиолетовая обработка, и требует новых подходов к обеспечению водной безопасности.

Кроме того, ученые утверждают, что токсичные вещества, которые остаются в воде после очистки, могут иметь серьезные последствия для здоровья человека. Эти вещества способны воздействовать на организм не только при прямом употреблении воды, но и через длительное воздействие на окружающую среду, включая почву и растения.

Особое внимание следует уделить тому, что многие химические вещества, остающиеся в воде после очистки, могут влиять на водные экосистемы, нарушая баланс в природе. Это особенно актуально для сельского хозяйства и промышленности, где использование воды после очистки является неотъемлемой частью производственных процессов.

Новые исследования, проведенные в сотрудничестве двух престижных университетов, подчеркивают необходимость пересмотра стандартов и методов очистки воды. Ученые предлагают больше внимания уделять не только процессам удаления загрязняющих веществ, но и тому, как эти вещества изменяются и каким образом они влияют на окружающую среду и здоровье человека.

Другие интересные новости:

▪ Открыты клетки, излечивающие от акне

▪ Химический коктейль морских черепах

▪ Отныне все голливудские студии поддерживают Blu-ray

▪ Переливание искусственной крови

▪ Электромобили помогли снизить риск развития астмы

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Студенту на заметку. Подборка статей

▪ статья На попа (ставить). Крылатое выражение

▪ статья Хватит ли питьевой воды на планете? Подробный ответ

▪ статья Гортензия. Легенды, выращивание, способы применения

▪ статья Проектирование автоматизированной системы контроля доступа. Энциклопедия радиоэлектроники и электротехники

▪ статья Автомат защиты электрических устройств от перепадов сетевого напряжения. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026