Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Глазные болезни. Методика обследования состояния глаза (часть II) (конспект лекций)

Конспекты лекций, шпаргалки

Справочник / Конспекты лекций, шпаргалки

Комментарии к статье Комментарии к статье

Оглавление (развернуть)

ЛЕКЦИЯ № 4. Методика обследования состояния глаза (часть II)

1. Осмотр глаза в проходящем свете

Глубокие среды глаза (хрусталик и стекловидное тело) исследуют в проходящем свете с помощью офтальмоскопа. Источник света (матовую электрическую лампу мощностью 60100 Вт) располагают слева и позади больного, врач садится напротив. С помощью офтальмологического зеркала, помещенного перед правым глазом исследователя, с расстояния 2030 см в зрачок обследуемого глаза направляют пучок света. Исследователь рассматривает зрачок через отверстие офтальмоскопа. Отраженные от глазного дна (преимущественно от сосудистой оболочки) лучи обусловливают красное свечение зрачка, особенно четко наблюдаемое, если он расширен. В случаях, когда преломляющие среды глаза прозрачны, рефлекс с глазного дна бывает равномерно красным. Различные препятствия на пути прохождения светового пучка, т. е. помутнения сред, задерживают часть отраженных от глазного дна лучей. На фоне красного зрачка эти помутнения видны как темные пятна разнообразной формы и величины. Изменения в роговице можно легко исключить при осмотре с помощью бокового освещения.

Помутнения хрусталика и стекловидного тела дифференцируются довольно легко. Сравнительную глубину залегания помутнений можно определить, предлагая больному смотреть в разные стороны. Темные пятна на фоне красного зрачка, связанные с помутнением хрусталика, перемещаются по отношению к центру зрачка, естественно, только при движении глазного яблока. Те из них, которые расположены в передних слоях хрусталика, смещаются в направлении движения глаза, расположенные в задних отделах в обратном направлении. Помутнения в передних отделах хрусталика достаточно четко бывают видны и при боковом освещении. Изменения стекловидного тела выглядят немного иначе. Чаще всего они напоминают темные тяжи, хлопья, которые продолжают перемещаться после остановки взора. При значительном изменении стекловидного тела вследствие воспаления сосудистого тракта или кровоизлияния рефлекс с глазного дна становится тусклым или отсутствует.

2. Офтальмоскопия

Глазное дно исследуется при помощи метода офтальмоскопии, который является одним из важнейших методов исследования органа зрения, позволяющим судить о состоянии сетчатки, ее сосудов, сосудистой оболочки и зрительного нерва. Наиболее широко метод офтальмоскопии применяется в обратном виде. Исследование проводят в затемненной комнате. Офтальмоскопическое зеркало устанавливают перед правым глазом исследователя, сидящего на расстоянии 4050 см от обследуемого. Источник света располагается позади и слева от пациента, как при осмотре в проходящем свете. После получения равномерного свечения зрачка исследователь ставит лупу (обычно в 13,0 дптр.) в 78 см перед глазом больного, упираясь пальцем в его лоб. Необходимо при этом следить, чтобы зрачок исследователя, отверстие зеркала, центр лупы и зрачок обследуемого находились на одной линии. Действительное обратное и увеличенное примерно в 5 раз изображение глазного дна видно висящим в воздухе на расстоянии около 7 см перед лупой. Для рассмотрения большей области глазного дна, если нет противопоказаний, зрачок пациента предварительно расширяют 1 %-ным раствором гоматропина или 0,25 %-ным раствором скополамина.

Осмотр глазного дна начинают с наиболее заметной его части диска зрительного нерва. Так как он расположен кнутри от заднего полюса, то при офтальмоскопии можно видеть его лишь при повороте глазного яблока на 1215° к носу. На красном фоне глазного дна диск зрительного нерва представляется желтовато-розовым, слегка овальным образованием с четкими границами. У детей до одного-двух лет диск чаще сероватый. Кровоснабжение носовой половины его лучше, поэтому цвет ее более яркий. В центре диска вследствие некоторого расхождения волокон образуется беловатая сосудистая воронка (физиологическая экскавация). Цвет, контуры и ткань диска зрительного нерва изменяются при воспалительных и застойных явлениях, атрофии зрительного нерва, поражении сосудистой оболочки и многих общих заболеваниях, в частности сосудов, крови и др. Обращают внимание на состояние сосудов сетчатки, выходящих из середины диска зрительного нерва, их калибр, цвет, ширину рефлексной полоски, располагающейся вдоль просвета более крупных артерий и век. Калибр сосудов (у здорового ребенка в первые месяцы жизни соотношение калибра артерий и вен 1:2, в старшем возрасте 2:3) изменяется как при ряде заболеваний глаза, так и при многих общих заболеваниях, в частности артериальной гипертензии, эндартериите, заболеваниях почек, диабете и т. д.

В функциональном отношении наиболее важной частью сетчатки является желтое пятно. Его лучше исследовать, предварительно расширив зрачок. Пациент при этом должен смотреть на зеркало офтальмоскопа. Желтое пятно при обратной офтальмоскопии у старших детей представляется в виде темно-красного овала, окруженного блестящей полоской макулярным рефлексом, образуемым за счет утолщения сетчатки по краю желтого пятна. В центре желтого пятна обычно видна блестящая светлая точка рефлекс от центральной ямки, фовеальный рефлекс. У новорожденных и детей первого года жизни макулярного и фовеального рефлексов нет. В области желтого пятна сосуды сетчатки не видны или иногда несколько заходят на его периферию.

Периферию глазного дна вплоть до зубчатой линии осматривают при различных направлениях взора пациента.

Рисунок и цвет глазного дна во многом зависят от содержания пигмента в пигментном эпителии сетчатки сосудистой оболочки. Чаще глазное дно бывает равномерно окрашенным в красный цвет, и на нем отчетливо видны сосуды сосудистой оболочки. Чем меньше пигмента на глазном дне, тем более светлым оно представляется вследствие просвечивания склеры. С возрастом тон глазного дна изменяется от бледно-розового к темно-красному.

Тщательное изучение изменений глазного дна осуществляется посредством офтальмоскопии в прямом виде. Для этого прибегают к использованию электрического офтальмоскопа, снабженного собственной осветительной системой. Преломляющие среды глаза обследуемого (достигается увеличение в 13-15 раз) служат увеличительным стеклом. Питание прибора происходит от электросети через понижающий трансформатор.

Более удобным является проведение осмотра при расширенном зрачке. Прямая офтальмоскопия позволяет исследователю максимально приблизиться к глазу больного (на 24 см), пока в отверстие офтальмоскопа не станет видно глазное дно. Офтальмоскоп держат так, чтобы указательный палец исследователя лежал на диске с корригирующими стеклами.

Вращая диск, ставят линзу, дающую наиболее резкое изображение глазного дна. Осмотр правого глаза пациента осуществляется правым глазом окулиста, соответственно проходит и осмотр левого глаза. Прямая офтальмоскопия дает возможность увидеть такие тонкие изменения, характер которых при обратной офтальмоскопии остается неясным.

Прямая офтальмоскопия дает возможность увидеть такие тонкие изменения, характер которых при обратной офтальмоскопии остается неясным.

Благодаря значительному увеличению и имеющейся бинокулярной насадке с его помощью возможно стереоскопическое исследование глазного дна, что особенно необходимо при дифференцировании тонких изменений в диске зрительного нерва.

Для исследования глазного дна используют офтальмохромоскоп, позволяющий осматривать глазное дно в свете различного спектрального состава (красном, желто-зеленом, пурпурном и др.). Поляризационный фотоофтальмоскоп дает возможность исследовать и фотографировать глазное дно в поляризованном свете. Регистрация изменений может осуществляться фотографической камерой и офтальмо(ретино)фотом.

3. Биомикроскопия

Для детального исследования прозрачных структур глаза и его оболочек применяют метод биомикроскопии. Он заключается в использовании узкого, резко ограниченного гомогенного пучка света, фокус которого можно помещать на различной глубине и в различных отделах глаза. Такой пучок света позволяет создать выраженную контрастность между освещенными и неосвещенными участками глаза, получить тонкий срез прозрачных его тканей. Исследование полученных срезов осуществляется с помощью бинокулярного микроскопа. Для биомикроскопии используют щелевую лампу, в которой специальный свободно перемещающийся осветитель смонтирован на общей оси вращения с микроскопом.

Этот прибор позволяет рассмотреть очень незначительные изменения в роговице, хрусталике, стекловидном теле, на глазном дне. В связи с тем, что световой пучок пересекает прозрачные ткани спереди назад под разным углом, можно легко установить глубину расположения изменений, их характер.

Например, при биомикроскопии роговицы четко видны даже точечные дефекты ее эпителия, особенно после окрашивания флюоресцеином, легче судить о глубине расположения помутнений, инфильтратов, инородных тел, с уверенностью можно говорить о поверхностном или глубоком характере васкуляризации. С помощью щелевой лампы можно увидеть нежные изменения эндотелия роговицы, его отек, преципитаты, рассмотреть взвесь форменных элементов крови во влаге передней камеры, появление в ней стекловидного тела (грыжа) после травмы, операции. Не менее ценные данные получают и при исследовании под микроскопом радужной оболочки. В случаях патологии в ней можно увидеть расширенные и новообразованные сосуды, участки атрофии, появление бугорков, задних синехий и т. д. Неоценима роль биомикроскопии при изучении состояния хрусталика и стекловидного тела. Она позволяет определить выраженность, локализацию помутнений хрусталика, судить о степени зрелости катаракты, происхождении ее, состоянии капсулы. Исследуя стекловидное тело, судят о характере изменений в нем, виде деструктивных нарушений и т. д.

Большие возможности дает этот метод для изучения патологических изменений сетчатки, сосудистой оболочки и зрительного нерва. Например, тонкие изменения в макулярной области при некоторых видах дегенерации можно увидеть только с помощью щелевой лампы. При этом целесообразны исследования в бескрасном свете и в свете различной интенсивности.

Биомикроскопия глаза у детей младшего возраста возможна лишь с помощью ручной щелевой лампы, причем иногда только во время медикаментозно углубленного сна или под наркозом.

Автор: Шильников Л.В.

<< Назад: Методика обследования состояния глаза (часть I) (Внешний осмотр глаза при естественном освещении. Метод бокового освещения. Осмотр комбинированным методом)

>> Вперед: Методика обследования состояния глаза (часть III) (Гониоскопия. Тонометрия. Тонография. Эхоофталография. Экзофтальмометрия)

Рекомендуем интересные статьи раздела Конспекты лекций, шпаргалки:

Налоги и налогообложение. Шпаргалка

Римское право. Шпаргалка

Факультетская терапия. Шпаргалка

Смотрите другие статьи раздела Конспекты лекций, шпаргалки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Веб-камеры RealSense 16.11.2016

Технология Intel RealSense рекламируется уже давно. Помимо прочего, она позволяет использовать функцию Windows Hello, то есть осуществлять вход в среду Windows 10 посредством распознавания лица пользователя. С обычными веб-камерами, не имеющими инфракрасного модуля определения глубины пространства, эта функция не работает, а значит, и пользы для подавляющего большинства пользователей не представляет, даже если они и хотели бы использовать такую возможность.

В Японии начались официальные продажи камеры Intel RealSense 3D SR300. Внешне она напоминает маленькую копию Xbox Kinect и более приспособлена к использованию совместно с настольными системами, нежели Kinect, рассчитанный на то, что пользователь находится на солидном расстоянии от телевизора, к которому подключена игровая консоль Microsoft. SR300 поддерживает захват видео в формате 1080p с частотой 60 кадров в секунду.

Но в дополнение к обычной съемке видео, в конструкции SR300 предусмотрена дополнительная инфракрасная камера и инфракрасный лазер. Их сочетание позволяет камере работать в качестве 3D-сканера, а также распознавать пользовательские жесты и выражения лиц. Подключается новинка к порту USB 3.0, от него же питается и не требует дополнительных адаптеров. Поле работы у данной модели простирается от 20 до 120 сантиметров от объективов. Устанавливается SR300 либо на верхний край монитора с помощью классической "прищепки", либо на входящую в комплект поставки небольшую треногу-штатив.

Стоимость новинки - $230.

Другие интересные новости:

▪ Бюджетный смартфон Coolpad Cool 20s

▪ Сети 5G опасны для животных

▪ Датчик нелегалов

▪ Цифровая авторучка с Bluetooth

▪ Атомный транзистор

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Большая энциклопедия для детей и взрослых. Подборка статей

▪ статья Во время оно. Крылатое выражение

▪ статья Как появились объявления и реклама? Подробный ответ

▪ статья На санях - летом. Личный транспорт

▪ статья Расчет транзисторных усилителей. Энциклопедия радиоэлектроники и электротехники

▪ статья Методы питания и исполнение магнитных рамочных антенн. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025