Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Концепции современного естествознания. Биохимия (конспект лекций)

Конспекты лекций, шпаргалки

Справочник / Конспекты лекций, шпаргалки

Комментарии к статье Комментарии к статье

Оглавление (развернуть)

ЛЕКЦИЯ № 7. Биохимия

1. Понятие биохимии, история ее появления

Биохимию по-другому называют органической химией. Оба названия, на мой взгляд, верны.

Биохимия - это наука, которая изучает соединения углерода с другими элементами, т. е. органическими элементами и законами их превращения. Эта наука изучает химические вещества, их структуру и распределение в организме.

Использование законов биохимии относится к глубокой древности. Человек уже издавна научился обрабатывать животные шкуры, научился готовить вино, брагу, т. е. использовал процессы брожения и т. п. Термин "органическая химия" был введен в 1827 г. ученым Й. Берцелиусом. Как же развивалась органическая химия?

Все началось с того, что была подорвана точка зрения, согласно которой в синтезе присутствует так называемая "жизненная сила". Это произошло после того, как в 1828 г. Ф. Велер исследовал мочевину.

На органической химии основаны все жизненные процессы, потому что углероды способны соединяться со многими элементами и могут образовывать молекулы самого разного состава и строения (например, цепного, циклического и т. д.). Именно этой способностью углерода и обусловлено такое множество органических соединений: к 90-м гг. XX в. их число составляло более 10 млн.

И весь этот процесс синтеза углерода с различными элементами привел к тому, что стали появляться отдельные отрасли науки и новые отрасли промышленности (например, производство синтетических красителей и т. д.).

Сама биохимия состоит из общей и аналитической химии, которые были ее "родителями". На сегодняшний день органическая химия уже сама давно обзавелась "потомством". В середине 20-х гг. XX в. произошло выделение молекулярной биологии. В связи с ростом народного хозяйства в отдельную науку выделилась техническая биохимия.

Молекулярная биология занимается тем, что исследует основные свойства и проявления жизни на молекулярном уровне, а также выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации и многие другие явления обусловлены структурой и свойствами биологических белков и нуклеиновых кислот, т. е. макромолекул.

Молекулярная биология тесно связана не только с органической химией, но и с:

1) биофизикой;

2) генетикой;

3) микробиологией.

Когда же все-таки возникла микробиология? Это точно неизвестно, но существуют две точки зрения:

1) молекулярная биология выделилась в 20-е гг. XX в. В это время происходит активное внедрение в биологию идей и методов, которые были позаимствованы из физики. Такое заимствование произошло для того, чтобы объяснить ряд явлений, таких как мышечное сокращение, наследственность и многие другие;

2) молекулярная биология возникла в 1953 г. Именно в этом году Дж. Уотсон и Ф. Крик разработали свою идею двойной спирали ДНК.

В Советском Союзе наука также не стояла на месте, а развивалась. Огромный вклад в это развитие внесли такие советские ученые, как А. Н. Белозерский, В. А. Энгельгардт.

Молекулярную биологию, биофизику, биохимию и т. п. включают в единый комплекс наук - физико-химическую биологию.

2. Белозерский Андрей Николаевич и его научные работы

Белозерский Андрей Николаевич родился в г. Ташкенте 16 (а по старому стилю 29) августа 1905 г. Он стал выдающимся российским биохимиком, лауреатом множества всесоюзных и международных премий.

Отец Андрея Николаевича Николай Андреевич Белозерский, был одним из первых русских поселенцев в Средней Азии. Его мать была педагогом и преподавала в гимназии. В 1913 г. семью Белозерских постигает несчастье: оба родителя Андрея Николаевича умирают, и он остается круглым сиротой. Начались трудные годы для мальчика: несколько лет он просто скитается по родственникам, а потом попадает в Гатчинский детский приют, где жизнь была также нелегка. В революционный 1917 г., весной, мальчика забирает к себе его родная тетка - сестра матери. Они поселяются в Казахстане, а точнее в г. Верном (ныне этот город называется Алма-Ата) Ему удается, не имея среднего образования, поступить в высшее учебное заведение - в Среднеазиатский государственный университет на физико-математический факультет. Позже он начинает работать в этом университете. Поначалу Белозерский устроился работать лаборантом. По прошествии нескольких лет, в 1925 г., Андрей Николаевич уже приступает к преподавательской деятельности.

Белозерскому повезло в том смысле, что в эти годы в САГУ работали множество выдающихся ученых-биологов из обеих столиц (т. е. и из Москвы, и из Петрограда).

Андрей Николаевич Белозерский попадает под положительное влияние известного биолога А. В. Благовещенского. Именно под его руководством Белозерский готовит свою первую научную работу, которая была посвящена концентрации водородных ионов в вытяжках из листьев некоторых горных растений.

Не секрет, что именно в эти годы в советской биологии играл самую важную роль лжеученый - биолог Лысенко, точка зрения которого была в корне неправильна и нелогична. Но Андрей Николаевич рискнул заняться молекулярной биологией именно в эти годы.

Белозерский занялся тем, что стал искать ДНК не только у животных, но и у растений. Спустя какое-то время, время упорного труда, он обнаружил ДНК у обычного гороха, а затем еще у ряда других растений и даже у бактерии. Он сделал вывод, что ДНК присуща не только животным. ДНК присуща вообще всем живым организмам. Этот открытие принесло Андрею Николаевичу мировую известность. Своим открытием он помог возродиться в Советском Союзе такой науке, как генетика. При Лысенко генетика была не практически запрещена. Андрея Николаевича приглашают посетить ряд престижных научных симпозиумов, которые должны пройти в зарубежных странах (например, Бельгии и Соединенных Штатах Америки). Естественно, что никто Белозерского туда так и не отпустил.

Имя Белозерского связано с открытием не только ДНК у растений, но и рядом других открытий, которые заслуживают внимания. В 1957 г. Белозерский и Спирин высказывают предположение, согласно которому клетки содержат не только ДНК, но и РНК. Вслед за этим Андрей Николаевич успешно защищает свою докторскую диссертацию.

Через небольшой промежуток времени, в 1958 г., происходит то, что и должно было произойти, - Андрей Николаевич Белозерский, еще при жизни Лысенко, избирается членом-корреспондентом Академии наук СССР. Спустя три года, в 1962 г., Белозерский становится действительным членом Академии наук СССР, а еще через девять лет произошло нечто вообще малообъяснимое: Андрей Николаевич Белозерский был избран вице-президентом Академии наук СССР. Почему же это малообъяснимо? Дело в том, что вице-президент Академии Наук была должность чисто номенклатурная, ее всегда занимали члены коммунистической партии. Белозерский же вообще был беспартийный, т. е. он не являлся членом коммунистической партии. Это, можно объяснить тем, что после Лысенко советская биология (и молекулярная биология в частности) была в таком плачевном состоянии, что практически не развивалась. Теперь же советскую науку возглавил человек, который не был причастен к антинаучной агитации.

Также благодаря усилиям Андрея Николаевича была организована современная лаборатория биохимии и микроорганизмов (тогда она называлась лабораторией антибиотиков); кафедра вирусологии на биолого-почвенном факультете МГУ в 1964 г.; при его поддержке был создан Институт белка Академии наук в г. Пущино в 1968 г. В 1965 г. Белозерский в Московском государственном университете создал межфакультетскую лабораторию биоорганической химии. Для того чтобы показать, как важен вклад Андрея Николаевича Белозерского в развитие молекулярной биологии, организованная им в 1965 г. лаборатория была переименована в Институт физико-химической биологии имени А. Н. Белозерского.

В памяти своих современников и учеников Андрей Николаевич остался как человек, обладающий вспыльчивым характером. Но, несмотря на свою вспыльчивость, Белозерский быстро успокаивался и быстро сглаживал обострившуюся ситуацию. Интересен также принцип его отношения к своим ученикам: Белозерский считал, что ученик должен превзойти своего учителя, он даже сам признавал первенство своего ученика.

Андрей Николаевич не считал себя каким-то выдающимся ученым - он просто работал ради науки и для науки. За свой огромный вклад в развитие науки Андрей Николаевич был удостоен множества наград и премий:

1) в 1951 г. ему присвоили орден Трудового Красного Знамени;

2) в "космический" 1961 г. Белозерскому вручают первый орден Ленина;

3) в 1965 г., спустя всего около четырех лет, Андрею Николаевичу вручают второй орден Ленина;

4) в 1969 г. ему вручают третий орден Ленина;

5) в 1969 г. Андрею Николаевичу присваивают звание Героя Социалистического Труда;

6) в 1971 г. в Германской Демократической Республике его избирают членом Германской академии естествоиспытателей - "Леопольдины".

Автор: Филин С.П.

<< Назад: Механизм наследственности. Квантовая механика

>> Вперед: Биофизика (Общие понятия и история. Луиджи Гальвани, его теория. Спор с Вольтом)

Рекомендуем интересные статьи раздела Конспекты лекций, шпаргалки:

Метрология, стандартизация и сертификация. Шпаргалка

Планирование на предприятии. Шпаргалка

Исследование систем управления. Конспект лекций

Смотрите другие статьи раздела Конспекты лекций, шпаргалки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Термоядерный синтез с намагниченной мишенью 15.05.2023

Революционная идея, предложенная группой ученых из Массачусетского технологического института (MIT), может революционизировать космические путешествия, увеличив мощность будущих космических миссий в 100 раз. Идея предполагает использование типа ядерного синтеза, называемого термоядерным синтезом на намагниченной мишени, для приведения космического корабля в движение.

В настоящее время большинство космических миссий возлагаются на химические ракеты, которые ограничены количеством топлива, которое они могут нести. Это означает, что миссии в далекий космос, например, на Марс или дальше, могут длиться годами и требовать огромного объема топлива. Новое предложение направлено на решение этой проблемы путем использования термоядерного синтеза на намагниченных мишенях для обеспечения практически неограниченного источника энергии.

Термоядерный синтез на намагниченных мишенях - это тип ядерного синтеза, предусматривающий сжатие и нагрев плазмы мишени с помощью магнитных полей. Этот процесс генерирует всплеск энергии, которая может использоваться для приведения в движение космического корабля. Ученые MIT предлагают использовать компактный термоядерный реактор для получения энергии, необходимой для этого процесса.

Компактный термоядерный реактор будет работать посредством комбинации мощных магнитов и лазеров для нагрева и сжатия небольшого количества плазмы. Это создало бы миниатюрную версию звезды, которая позже высвободила бы всплеск энергии, которая может быть использована для приведения в движение космического корабля.

Одним из ключевых преимуществ использования термоядерного синтеза на намагниченных мишенях для космических путешествий является то, что он позволит космическим аппаратам двигаться гораздо быстрее, чем позволяет современная технология. Это означает, что миссии, которые продолжаются годы, могут быть завершены через несколько месяцев или даже недель. Кроме того, поскольку источник топлива практически неограничен, отпала бы потребность в дорогостоящих операциях дозаправки, что значительно снизило бы стоимость космических путешествий.

Используя термоядерный синтез на намагниченных мишенях для обеспечения практически неограниченной тяги, мы могли бы открыть возможность исследовать дальний космос способом, который никогда не был возможен раньше. При продолжении исследований и разработок эта идея может стать реальностью и открыть целую новую эру космических исследований.

Другие интересные новости:

▪ Трехпортовый видеопереключатель FSAV433

▪ Телефон в часах

▪ Объяснен космологический парадокс напряжения Хаббла

▪ Воды на Марсе более чем достаточно

▪ Многоразовая бумага

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электромонтажные работы. Подборка статей

▪ статья Альбер Камю. Знаменитые афоризмы

▪ статья Кто противостоял в Куликовской битве русским войскам, возглавляемым Дмитрием Донским? Подробный ответ

▪ статья Гевея. Легенды, выращивание, способы применения

▪ статья Антенные усилители SWA. Энциклопедия радиоэлектроники и электротехники

▪ статья Светофор Семафорович. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025