Правильный ответ: Каморка.
Интересная Случайная пятерка вопросов викторины онлайн.
Смотрите другие статьи раздела Викторина онлайн.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Другие вопросы Викторины онлайн:
Герой англичанина Дэвида Лоджа, отдыхая на Гавайях, в определенный момент не СДЕЛАЛ ЭТОГО, после чего попал в больницу. Мужчина, который ДЕЛАЕТ ЭТО, - распространенная тема обсуждения на женских форумах. Ответьте двумя словами, что такое "ДЕЛАТЬ ЭТО".
Люди нередко попадают в официальные документы, когда оказываются нарушителями порядка. Так случилось и с отцом Вильяма Шекспира - Джоном. Его вместе с двумя соседями оштрафовали на 12 пенсов за то, что перед их домами обнаружили... Что?
Очертания эмблемы "Игр доброй воли" напоминают земной шар, окруженный лавровым венком. Однако очертания эмблемы первых игр, 1986 года несколько отличались. Что они имитировали?
Весной 1997 года при раскопках древних сарматских курганов IV-III вв. до н.э. на восточной окраине Волгограда близ села Покровка археологами была сделана очень интересная находка. Она позволила предположить, что за несколько столетий до новой эры эти места были местом обитания легендарного народа, представителям которого один из древнегреческих историков дал такую характеристику: "Они не знакомы с законом, не признают никаких царей, даже великих, своим имуществом считают то, что взяли с поля боя, а в душе не имеют ничего, кроме дерзости, дикости и жестокости. Они мастера метать дротики и добивать противников короткими мечами". Как вы думаете, каково было основное отличие женских и мужских захоронений в этих курганах?
<< Назад
Последние новости науки и техники, новинки электроники:
Сон как эффективный механизм обучения
23.12.2025
Процесс обучения и формирования долговременных воспоминаний продолжает оставаться одной из самых загадочных функций человеческого мозга. Новое исследование, проведенное учеными из Университета Брауна в США, проливает свет на то, как именно мозг повторно обрабатывает информацию во сне, помогая закреплять полученные навыки. Это открытие потенциально может быть использовано при создании устройств и методик для помощи людям с параличами или неврологическими нарушениями.
В ходе эксперимента исследователи наблюдали за лабораторными мышами, обученными проходить лабиринт. С помощью специальных датчиков ученые отслеживали активность нейронов, которые активировались в момент правильного выбора пути. Оказалось, что во сне те же нейроны воспроизводили точно такую же последовательность сигналов, как и в период обучения.
Этот феномен, который ученые называют "повторным воспроизведением", помогает мозгу переносить краткосрочные воспоминания в долговременную память. Таким образом, полученная инф ...>>
Термопаста Arctic MX-7
23.12.2025
Швейцарская компания Arctic представила новую версию своей фирменной термопасты - MX-7, позиционируя ее как универсальное решение для различных устройств, от настольных ПК до игровых консолей и ноутбуков.
Arctic MX-7 отличается оптимальной консистенцией, которая обеспечивает равномерное нанесение на поверхность процессора или GPU, минимизируя появление воздушных пузырьков и улучшая теплопередачу. Производитель подчеркивает, что паста устойчива к эффекту "pump-out", когда термоинтерфейс со временем выдавливается из-за циклов нагрева и охлаждения, что продлевает срок службы компонентов.
Хотя Arctic не раскрывает официальное значение теплопроводности MX-7, независимые тесты подтверждают высокую эффективность термопасты. Например, по данным портала Igor's Lab, показатель теплопроводности составляет 6,17 Вт/мК, что делает ее конкурентоспособной на фоне других высококлассных термоинтерфейсов.
Применение MX-7 не ограничено настольными системами. Паста подходит для замены штатных терм ...>>
Гибкая кремниевая мембрана, меняющая цвет при растяжении
22.12.2025
Исследователи Амстердамского университета продемонстрировали уникальный метаматериал, способный изменять цвет под воздействием механического растяжения. В основе этой технологии лежит структурный цвет - явление, при котором окраска определяется геометрией микроструктур, а не пигментами.
Команда ученых во главе с Фриком ван Горпом преобразовала кремний в тонкую сетку с определенным узором, что позволило создать одновременно гибкий и функциональный материал. При растяжении отдельные элементы структуры поворачиваются, меняя способ отражения света: материал плавно изменяет оттенок от зеленого до красного, создавая эффект "живого" цвета.
Один из первых вызовов заключался в хрупкости кремния. Отказавшись от подложки, исследователи получили тонкую гибкую мембрану, способную выдерживать деформацию. Йорик ван де Гроп подчеркнул, что ключевой особенностью разработки является многофункциональность структуры. Она объединяет свойства механических метаматериалов с возможностями оптических мета ...>>
Случайная новость из Архива Искусственный интеллект получил нос
01.03.2017
Ученые давно спорят о том, как именно рецепторы человеческого организма позволяют нам воспринимать широкий спектр запахов и давать им те или иные описания. В попытках решить эту проблему, командам инженеров со всего мира было предложено создать ИИ, который смог бы воспринимать запахи не хуже человека.
Предсказать цвет не так уж сложно: к примеру, если световая волна достигает длины 510 нм, то большинство людей скажут, что она зеленая. Но вот выяснить, как пахнет конкретная молекула, намного сложнее. 22 команды ученых создали набор алгоритмов, способных предсказать запахи различных молекул в зависимости от их химической структуры. Еще предстоит выяснить весь спектр практического применения программы, но разработчики надеются, что в первую очередь она поможет парфюмерам, фармацевтам и сотрудникам пищевой сферы разрабатывать новые, уникальные сочетания запахов.
Работа началась с недавнего исследования, проведенного Лесли Воссхаллом и его коллегами из Рокфеллеровского университета в Нью-Йорке, в котором 49 добровольцев должны были угадать запах 467 пахучих веществ. Для каждого из них была разработана система сравнения из 19 базовых паттернов: испытуемые говорили, похож ли запах на рыбу или чеснок, оценивали интенсивность и индивидуальную приятность аромата. В итоге был создан каталог, насчитывающий более чем миллион ячеек, характеризующих те или иные пахучие молекулы.
Когда об этом узнал вычислительный биолог Пабло Мейер, то сразу увидел в исследовании возможность проверить, сможет ли компьютерная система предсказать то, как люди будут оценивать запахи. Несмотря на то, что исследователи обнаружили около 400 рецепторов запаха в организме человека, для ученых остается загадкой то, как именно они работают сообща так, чтобы человек мог различать даже легкие оттенки запахов.
В 2015 году Мейер и его коллеги запустили DREAM Olfaction Prediction Challenge. Участники состязания получили в свое распоряжение те самые рейтинговые таблицы волонтеров, описывающие запахи, вместе с химической структурой молекул, которые их производят. Помимо этого, участником предоставили базу из 4800 описаний для каждой отдельной молекулы - ее атомы, их взаимное расположение, общую геометрию, что в итоге составило порядка 2 миллионов дата-точек. В итоге данные должны быть использованы для обучения компьютерных программ распознаванию запахов на основе структурной информации.
В конкурсе приняло участие 22 команды со всего мира, и, хотя хорошо поработали многие, две команды стоит выделить особо. Команда штата Мичиган, во главе с Йан Фан Гуаном, лучше всех смогла составить алгоритм прогнозирования запахов отдельных вещей. Другая команда из Аризонского университета, во главе с Ричардом Геркином, лучше всех смогла обучить программу средней оценке запахов среди всей выборки. Об этом Мейер сообщает в статье, опубликованной в журнале Science.
Конечно, многие ученые скептически относятся к разработкам, говоря о том, что проделанный труд хоть и вносит существенный вклад в науку, но все же является довольно примитивной подборкой, и 19 описательных элементов для всего спектра запахов в природе - это явно очень и очень мало.
Альтернативные исследования с добровольцами использовали от 80 и больше подобных критериев, позволяющих на словах оценить различные запахи. Неясно, сможет ли существующий алгоритм корректно прогнозировать оценку запахов, если ему придется столкнуться с таким массивом информации. Так что, на сегодняшний день восприятие запахов остается загадкой как для медиков, так и для инженеров.
|
Другие интересные новости:
Tesla будет цокать копытами
Реакция у ПК-игроков хуже, чем у консольных
Электронная книга Xiaomi InkPalm Plus
За время каникул школьники глупеют
Аудиосистема через электропроводку
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Аудиотехника. Подборка статей
▪ статья Слова, слова, слова. Крылатое выражение
▪ статья Сколько глаз у рыбы четырехглазки? Подробный ответ
▪ статья Врач-торакальный хирург. Должностная инструкция
▪ статья Антенный усилитель для радиопередатчика. Энциклопедия радиоэлектроники и электротехники
▪ статья Восстановление купюры. Секрет фокуса
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025