www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

Кристаллическая целлюлоза 02.07.2015

Все говорят о волокнах целлюлозы, целлюлозной массе, а что такое кристаллическая целлюлоза? Волокно состоит из нанофибрилл, нанофибриллы - из полимерных нитей, причем в некоторых участках длинные молекулы целлюлозы прочно соединены водородными связями и высокоупорядоченны, а в других имеют аморфную структуру.

Целлюлоза, очищенная от лигнина и гемицеллюлозы, мягкая и волокнистая. Но если обработать его, например, крепкой кислотой или ферментом, которая уничтожит неупорядоченные участки полимера, то останутся миниатюрные иголочки нанометрового диаметра, состоящие из плотно уложенных фрагментов глюкозных цепочек. Эти иголочки - кристаллическая наноцеллюлоза (CNC) - прочнее кевларового и углеродного волокна, а стоят в десять раз дешевле. Их выход - примерно 30% от целлюлозной массы, цену при массовом производстве надеются довести до нескольких долларов за килограмм. К тому же целлюлозные нанокристаллы прозрачны, а пленки из нанокристаллической целлюлозы обладают интересными оптическими свойствами.

Целлюлозные волокна, или нанофибриллы, нанометрового диаметра и длиной в несколько микрометров - тоже полезный материал; из них можно делать нанокомпозиты, пленки для различных фильтров, а растворы целлюлозных нановолокон обладают необычными физическими свойствами. В отличие от многих других наночастиц наноцеллюлоза абсолютно биосовместима и не внушает опасений самым ярым защитникам природы. Есть у этих материалов важный минус - высокая гигроскопичность: даже маленьким частицам древесины свойственно связывать воду. Но тут уже карты в руки химикам и технологам.

Гидрофобные, пластичные и прозрачные наноцеллюлозные пленки недавно получила группа японских исследователей, которые много лет работают с целлюлозными нановолокнами, окисленными NaClO в присутствии (2,2,6,6-тетраметилпиперидин-1- ил)-оксила (сокращенно TEMPO или TO) и бромида натрия. При окислении свободные поверхностные -CH2OH группы превращаются в карбоксильные -COO-; такие нановолокна исследователи назвали TOCN. В этой работе японцы получали пленки, высушивая водную дисперсию TOCN с четвертичными алкиламинами - молекулами, в которых четыре алкильные цепи привязаны к одному положительно заряженному атому азота. Алкиламины становились противоионами для карбоксилатных поверхностных групп и придавали пленке пластичность - алкильные цепи покрывают ее поверхность и занимают пространство между нановолокнами.

К тому же наноцеллюлозная пленка становилась водоотталкивающей: если использовать тетра(n-бутил)-аммоний, то угол контакта с водой достигает 100°. Такие нанофибриллы могут быть наполнителем в гидрофобных полимерных матрицах.

<< Назад: Внешние накопители Transcend StoreJet 35T3 8 Тбайт 02.07.2015

>> Вперед: Ноутбук управляется с помощью глаз 01.07.2015

Последние новости науки и техники, новинки электроники:

Сверхлегкая беспроводная мышь Logitech G Pro X Superlight 25.11.2020

Logitech представила новую беспроводную игровую мышь Logitech G Pro X Superlight, которую в компании называют самой легкой wireless-мышью для профессиональных киберспортсменов. Модель уже прошла испытания игроками датской команды Astralis в 12-ом сезоне ESL PRO League Final, а также французской команды G2 Esports на League of Legends European Championship 2020. Модернизированная и специально спроектированная для снижения веса при одновременном повышении производительности, мышка весит менее 6 ...>>

Магнитный спрей создает роботов 25.11.2020

Для создания крошечных роботизированных устройств нужна миниатюрная электроника, что делает производство таких механизмов сложным и дорогостоящим занятием. Исследователи из Гонконга рассказали о новой технологии, позволяющей превращать любые микроскопические объекты в роботов при помощи специального магнитного спрея. Команда ученых заявила о создании уникального спрея, после обработки которым любые объекты получают функции роботов и могут управляться благодаря магнитным свойствам. Спрей состо ...>>

Новая технология оптического изображения наночастиц 24.11.2020

Ученые из Хьюстонского университета и Онкологического центра при Техасском университете (США) разработали новую технологию оптического изображения PANORAMA, которая может обнаружить наночастицы размером до 25 нанометров. Специалисты отмечают, что размер самого маленького прозрачного объекта, который может сегодня отобразить стандартный микроскоп, составляет от 100 до 200 нанометров. Помимо того, что они такие маленькие, эти объекты не отражают, не поглощают и не "рассеивают" достаточно света, ...>>

Сетевое хранилище TerraMaster F5-221 24.11.2020

Ассортимент компании TerraMaster пополнило хранилище с сетевым подключением F5-221, ориентированное на небольшие предприятия и домашних пользователей. Хранилище построено на двухъядерном процессоре Intel Celeron J3355, работающем на частоте 2,0-2,5 ГГц, в распоряжении которого есть 2 ГБ оперативной памяти. Память можно расширить до 6 ГБ. Хранилище TerraMaster F5-221 располагает пятью отсеками, куда можно установить накопители типоразмера 2,5 дюйма или 3,5 дюйма с интерфейсом SATA суммарным об ...>>

Искусственный алмаз получен при комнатной температуре 23.11.2020

Новая технология позволяет синтезировать искусственные алмазы без сильного нагревания и получать даже редчайший лонсдейлит с особо прочными кристаллами. В естественных условиях алмазы формируются глубоко в недрах Земли. Его образование занимает немало времени, требует высокого давления и нагрева выше 1000 °C. Получать синтетические алмазы удается быстрее, хотя процесс по-прежнему происходит при огромных давлениях и температурах. Обойтись без нагревания ученые научились только теперь, разработ ...>>

Случайная новость из Архива

Молнии преследуют морские суда 26.09.2017

В городе Сиэтл (штат Вашингтон) работает Всемирная сеть регистрации молний. Она собирает данные от десятков датчиков по всему миру, которые улавливают электромагнитные возмущения, порождаемые молниями - так называемые атмосферики.

Все датчики стоят на суше, но атмосферики распространяются на тысячи километров от места разряда, потому что они представляют собой радиоволны, еще более длинные, чем те, на которых ведется радиовещание. Так что атмосферик, возникший над океаном, легко дойдет до датчика на суше, а если его зарегистрируют сразу несколько датчиков, то можно точно определить, где случилась молния.

Ученые заметили практически прямую линию из вспышек поперек Индийского океана. Оказалось, что молнии концентрировались вдоль наиболее загруженных судоходных путей, которые тянутся из северной части Индийского океана через Малаккский пролив в Южно-Китайское море.

Исследователи собрали данные обо всех полутора миллиардах вспышек, зарегистрированных с 2005 по 2016 год. Выяснилось, что вдоль этих судоходных путей вспышки случались в среднем в два раза чаще, чем в соседних областях океана с тем же климатом. Естественные погодные условия не объясняли феномен повышенной концентрации молний - то есть, очевидно, молнии каким-то образом нагнетали сами корабли.

Известно, что молния может проскакивать как между соседними грозовыми облаками, так и между облаком и землей. Во втором случае она бьет в самый высокий предмет. Так происходит, потому, что до высоких предметов от неба ближе, а электрическое напряжение всегда стремится к разрядке по самому короткому пути из возможных.

Поскольку в открытом океане самыми высокими предметами оказываются палубы судов, то молнии частенько бьют именно туда. (Конечно, настоящей бедой это было лишь для средневековых кораблей, современные же надежно защищены от повреждений громоотводами.) Раз так, можно предположить, что "концентрирование" молний вдоль морских путей тем и объясняется, что их притягивают суда. Однако область с "повышенным содержанием" молний на деле значительно шире корабельных фарватеров.

Специалистысследователи объяснили феномен довольно просто. По всей видимости, виноваты выхлопные газы, которые выделяют любые двигатели внутреннего сгорания, в том числе и двигатели морских судов. В выхлопах содержатся частички сажи, соединения азота и серы и другие микроскопические компоненты. Они помогают конденсироваться молекулам воды, которые предпочитают налипать как раз на какие-то уже готовые капли или частицы, присутствующие в атмосфере.

Если таких частиц - ядер конденсации - мало (например, над открытым океаном, где чистый воздух), у молекул воды выбор невелик, и они образуют большие капли. Но из-за выхлопных газов частиц становится гораздо больше, и получается много мелких капель. Поскольку они легче, они поднимаются на большую высоту, так что многие из них замерзают, достигая слоев с отрицательной температурой.

Между тем, кристаллы льда необходимы для электризации облака. Точнее, для электризации нужно, чтобы в нем присутствовали одновременно и капли, и кристаллы льда (именно поэтому зимой обычно не бывает молний: зимой в облаках есть только кристаллы).

Электризация происходит, когда кристаллы и капли сталкиваются друг с другом; считается, что более легкие и мелкие частицы заряжаются преимущественно положительно, а более тяжелые и крупные - отрицательно. Наполнившись электричеством, облако разряжается молнией. Поскольку грозовые облака возникают благодаря корабельным выхлопам, то и зона молний оказывается шире фарватера.

Смотрите полный Архив новостей науки и техники, новинок электроники


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов