Молекулярный переключатель
18.03.2023
Международная группа исследователей, в том числе из Института физики твердого тела Токийского университета, совершила новаторское открытие. Они успешно продемонстрировали использование одной молекулы под названием фуллерен как переключатель, подобный транзистору. Команда достигла этого, применив точно откалиброванный лазерный импульс, позволивший им предсказуемо контролировать путь входного электрона.
Процесс переключения, обеспечиваемый молекулами фуллерена, может быть значительно быстрее, чем используемые в микрочипах переключатели с увеличением скорости на три-шесть порядков в зависимости от используемых лазерных импульсов. Использование фуллереновых переключателей в сети может привести к созданию компьютера с возможностями, превышающими возможности, которые доступны с помощью электронных транзисторов. Кроме того, они обладают потенциалом революционизировать устройства для микроскопических изображений, обеспечивая беспрецедентный уровень разрешения.
Более 70 лет назад физики обнаружили, что молекулы излучают электроны в присутствии электрических полей, а затем и определенных длин волн света. Излучение электронов создавало узоры, которые вызывали любопытство, но избегали объяснения. Но это изменилось благодаря новому теоретическому анализу, разветвление которого может не только привести к новым высокотехнологичным применениям, но и улучшить нашу способность тщательно исследовать сам физический мир.
Простая аналогия того, как фуллереновый переключатель работает как переключатель поездов. Световой импульс может изменить путь, по которому проходит входной электрон, представленный здесь цепью.
Исследователь проекта Хирофуми Янагисава и его команда выдвинули теорию о том, как должно вести себя излучение электронов из возбужденных молекул фуллерена под действием определенных типов лазерного света, и проверив свои прогнозы, обнаружили, что они правильны.
В зависимости от импульса света, электрон может либо оставаться на своем курсе по умолчанию, либо быть перенаправленным предсказуемым способом. Итак, это чуть-чуть похоже на точки переключения на железнодорожном пути или электронный транзистор, только гораздо быстрее. Ученые считают, что мы смогут добиться скорости переключения в 1 миллион раз быстрее, чем классический транзистор. И это может привести к настоящей производительности в вычислениях. Но не менее важно то, что если мы сможем настроить лазер, чтобы побудить молекулу фуллерена переключаться несколькими способами одновременно, это может походить на наличие нескольких микроскопических транзисторов в одной молекуле.
Молекула фуллерена, лежащая в основе переключателя, связана с возможно немного более известной углеродистой нанотрубкой, хотя вместо трубки фуллерен является сферой атомов углерода. При размещении на металлической точке - по сути, на конце шпильки - фуллерены ориентируются определенным образом, чтобы предсказуемо направлять электроны. Быстрые лазерные импульсы в масштабе фемтосекунд, квадриллионных частиц секунды или даже аттосекунд, квинтиллионных частиц секунды, фокусируются на молекулах фуллеренов, чтобы вызвать излучение электронов. Это первый раз, когда лазерный свет использовался для контроля излучения электронов с молекулы таким образом.
В принципе, поскольку несколько сверхбыстрых электронных переключателей можно объединить в одну молекулу, потребуется лишь небольшая сеть фуллереновых переключателей, чтобы выполнять вычислительные задачи гораздо быстрее, чем обычные микросхемы. Но есть несколько препятствий, которые нужно преодолеть, например, как миниатюризировать лазерный компонент, который будет необходим для создания этого нового вида интегральной схемы. Итак, может пройти много лет, прежде чем мы увидим смартфон на основе коммутатора фуллерена.
<< Назад: Био-цемент 18.03.2023
>> Вперед: Съедобный дрон 17.03.2023
Последние новости науки и техники, новинки электроники:
Впервые преоодолена передача ВИЧ от матери к ребенку
02.01.2026
Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата.
Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности.
Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>
Нанослой германия увеличивает эффективность солнечных батарей на треть
02.01.2026
Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств.
Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам.
Для решения этих проблем ученые предлож ...>>
Электростатическое решение для борьбы с льдом и инеем
01.01.2026
Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта.
Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей.
Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>
Древний лед Антарктики
01.01.2026
Изучение древних ледниковых слоев - один из самых надежных способов понять, как формировался климат Земли и как он может изменяться в будущем. Недавнее открытие международной группы исследователей в Антарктике дает уникальную возможность заглянуть на миллионы лет назад и получить ценную информацию о атмосфере нашей планеты.
В районе Аллан-Хиллс ученые пробурили керны древнего льда и обнаружили слои, возраст которых оценивается примерно в 6 миллионов лет. Это старейший лед, когда-либо найденный на Земле и датированный напрямую, что делает находку беспрецедентной в истории климатологии.
Особое значение имеют крошечные пузырьки воздуха, запечатленные в ледяных кристаллах. Они служат настоящими "капсулами времени", сохраняя состав атмосферы прошлого. Анализ этих пузырьков позволяет восстановить климатические условия древней Земли, когда средние температуры были выше современных, а уровень океанов значительно выше нынешнего.
Древние ледяные керны можно рассматривать как подробные х ...>>
Нано-уровень управления светом
31.12.2025
Современная нанофотоника стремится превратить свет в инструмент точного управления на микроскопическом уровне. Недавние исследования международной команды ученых открывают новые возможности в этой области, позволяя манипулировать светоматериальными волнами на наноуровне с беспрецедентной точностью. Такие достижения могут стать ключом к созданию сверхбыстрых коммуникационных систем и высокочувствительных сенсоров.
В центре внимания исследователей оказались гиперболические фонон-поляритоны - особый тип волн, возникающих при взаимодействии света с колебаниями вещества. Эти волны способны концентрировать свет в пространственных масштабах, значительно меньших длины его волны, что позволяет создавать устройства с высокой плотностью интеграции и повышенной функциональностью.
Работа велась совместно учеными из Шанхайского транспортного университета, Национального центра нанонауки и технологий Китая, а также коллегами из Испании. Они предложили двухэтапную схему возбуждения волн: сначала ...>>
Случайная новость из Архива Звукопоглощающий шелк
17.05.2024
В мире, где шум становится все более навязчивым, появление инновационных материалов, способных уменьшить его воздействие, вызывает большой интерес. Исследователи Массачусетского технологического института представили новую разработку - звукопоглощающую шелковую ткань, которая обещает стать революцией в создании тихих пространств.
В Массачусетском технологическом институте (MIT) произошел значительный прорыв в области звукопоглощения. Исследователи разработали специальную шелковую ткань, способную эффективно поглощать звук и создавать уютные, тихие окружения.
Ткань, тоньше человеческого волоса, содержит в себе уникальное вибрирующее волокно, которое активируется при подаче на него напряжения. Эта особенность позволяет использовать ткань для подавления звуковых волн двумя различными способами.
Первый метод основан на использовании вибраций ткани для генерации звуковых волн, которые перекрывают нежелательный шум и подавляют его, подобно наушникам с функцией шумоподавления. Этот подход эффективен в ограниченных пространствах, таких как кабины самолетов или помещения.
Второй метод более удивителен: ткань фиксируется, чтобы подавить вибрации, играющие ключевую роль в передаче звука. Это позволяет снизить шум в крупных помещениях, таких как офисы или автомобили.
Используя обычные материалы, такие как шелк и муслин, исследователи создали шумопоглощающие ткани, которые можно применять в реальных условиях. Этот материал может быть использован для создания перегородок в офисах, тихих зон в общественных местах или даже в автомобильной промышленности для уменьшения шума в салоне.
Разработка звукопоглощающей шелковой ткани в Массачусетском технологическом институте открывает новые горизонты в области акустических технологий. Этот материал не только обеспечивает уменьшение шума, но и предлагает широкий спектр применений в различных сферах жизни, от офисных помещений до автомобильной промышленности.
|
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025