Бесплатная техническая библиотека
Мобильный телефон с двумя фотокамерами
07.03.2004
Нередко туристы отдают кому-нибудь свой фотоаппарат, показывают, какую кнопку нажать, и просят сфотографировать себя на фоне какого-то памятника.
Японская фирма электроники NEC запатентовала телефон, которым можно сфотографировать самого себя на фоне какой-либо достопримечательности. Мобильный телефон с цифровой фотокамерой уже не новинка, но специалисты NEC предлагают встроить в телефон две камеры с объективами, направленными в разные стороны.
Держа аппарат на вытянутой руке, вы нацеливаете один объектив на себя, а другой - на достопримечательность, напротив которой стоите. Одновременно делаются два снимка, а электроника аппарата их совмещает, так что ваш портрет оказывается на желаемом фоне.
<< Назад: Infineon начал производство NAND-памяти емкостью 512 Мбит 08.03.2004
>> Вперед: Первый военный корабль из пластмассы 07.03.2004
Последние новости науки и техники, новинки электроники:
Оптимальная продолжительность сна
12.11.2025
Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам.
Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта.
Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>
Дефицит кислорода усиливает выброс закиси азота
12.11.2025
Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски.
Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота.
В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>
Омега-3 помогают молодым кораллам выживать
11.11.2025
Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.
В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.
Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>
Наушники Bowers & Wilkins Px8 S2
11.11.2025
Наушники премиум-класса становятся не только аксессуаром для прослушивания музыки, но и инструментом для профессиональной работы с аудио. Новый флагман британского бренда Bowers & Wilkins - модель Px8 S2 - демонстрирует, как эти аспекты можно объединить в одной беспроводной системе.
Компания представила Px8 S2 как обновленную флагманскую модель в линейке, ориентированную на пользователей, которые ценят высокое качество звука, эффективное шумоподавление и премиальный дизайн. Производитель отмечает, что наушники сочетают передовые акустические решения с эргономикой для длительного использования.
Каждое устройство оснащено 40-миллиметровыми динамиками с карбоновыми диффузорами и 24-битным цифровым процессором. По словам Bowers & Wilkins, это обеспечивает точное и детализированное воспроизведение звукового спектра, а также поддержку аудио высокого разрешения. Автоматическая оптимизация соединения с источником сигнала гарантирует стабильное и качественное звучание вне зависимо ...>>
Шимпанзе могут менять свои убеждения
10.11.2025
Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим.
Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации.
Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми.
Для экспериментов использовались шимпанзе из ...>>
Случайная новость из Архива Флуоресцентая микроскопия высокого разрешения
17.10.2014
Чтобы рассмотреть клетку и ее содержимое, мы должны взять микроскоп. Его принцип работы относительно прост: лучи света проходят через объект, а потом попадают в увеличительные линзы, так что мы можем разглядеть и клетку, и некоторые органеллы внутри нее, например, ядро или митохондрии.
Но если мы захотим увидеть молекулу белка или ДНК, или рассмотреть крупный надмолекулярный комплекс вроде рибосомы, или вирусную частицу, то обычный световой микроскоп окажется бесполезен. Еще в 1873 году немецкий физик Эрнст Аббе вывел формулу, полагающую предел возможностям любого светового микроскопа: оказывается, в него нельзя увидеть объект, размером меньше половины длины волны видимого света - то есть меньше 0,2 микрометров.
Решение, очевидно, состоит в том, чтобы выбрать нечто, что смогло бы заменить видимый свет. Можно использовать пучок электронов, и тогда мы получим электронный микроскоп - в него можно наблюдать вирусы и белковые молекулы, но наблюдаемые объекты при электронной микроскопии попадают в совершенно неестественные условия. Поэтому исключительно удачной оказалась идея Штефана Хелля (Stefan W. Hell) из Института биофизической химии Общества Макса Планка (Германия), которому в начале 90-х голов пришла в голову мысль использовать для визуализации макромолекул и их комплексов стимулированное флуоресцентное излучение.
Суть идеи состояла в том, что объект можно облучить лазерным лучом, который переведет биологические молекулы в возбужденное состояние. Из этого состояния они начнут переходить в обычное, освобождаясь от излишков энергии в виде светового излучения - то есть начнется флуоресценция, и молекулы станут видимыми. Но излучаемые волны будут самой разной длины, и у нас перед глазами будет неопределенное пятно. Чтобы такого не случилось, вместе с возбуждающим лазером объект обрабатывается гасящим лучом, который подавляет все волны, кроме тех, которые обладают нанометровой длиной. Излучение с длиной волны порядка нанометров как раз позволяет отличить одну молекулу от другой.
Метод получил название STED (stimulated emission depletion), и как раз за него Штефан Хелль получил свою часть Нобелевской премии. При STED-микроскопии объект не охватывается лазерным возбуждением сразу целиком, а как бы прорисовывается двумя тонкими пучками лучей (возбудителем и гасителем), потому что чем меньше область, которая флуоресцирует в данный момент времени, тем выше разрешение изображения.
Метод STED впоследствии дополнился так называемой одномолекулярной микроскопией, разработанной в конце XX века независимо двумя другими нынешними лауреатами, Эриком Бетцигом (Eric Betzig) из Института Говарда Хьюза и Уильямом Мернером (William E. Moerner) из Стэнфорда. В большинстве физико-химических методов, полагающихся на флуоресценцию, мы наблюдаем суммарное излучение сразу множества молекул. Уильям Мернер как раз предложил способ, с помощью которого можно наблюдать за излучением одной молекулы. Экспериментируя с зеленым флуоресцентным белком (GFP), он заметил, что у его молекул свечение можно произвольно включать и выключать, манипулируя длиной возбуждающей волны. Включая и выключая флуоресценцию разных молекул GFP, их можно было наблюдать в световой микроскоп, не обращая внимания на нанометровое ограничение Аббе. Целое изображение можно было получить, просто совместив несколько снимков с разными светящимися молекулами в поле наблюдения. Эти данные были дополнены идеями Эрика Бетцига, который предложил увеличить разрешение флуоресцентной микроскопии, использовав белки с разными оптическим свойствами (то есть, грубо говоря, разноцветные).
Совмещение метода возбуждения-гашения Хелля с методом суммы наложений Бетцига и Мернера позволило разработать микроскопию с нанометровым разрешением. С ее помощью мы можем наблюдать не только органеллы и их фрагменты, но и взаимодействия молекул друг с другом (если молекулы пометить флуоресцентными белками), что, повторим, далеко не всегда возможно с электронно-микроскопическими методами. Значение метода трудно переоценить, ведь межмолекулярные контакты - это то, на чем стоит молекулярная биология и без чего невозможно, например, ни создание новых лекарств, ни расшифровка генетических механизмов, ни многие другие вещи, лежащие в поле современной науки и техники.
|
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua 2000-2025
|