Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ПДУ телевизора управляет люстрой. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Телевидение

Комментарии к статье Комментарии к статье

Пульт дистанционного управления (ПДУ) можно применить для включения и выключения освещения в комнате, где расположен телевизор. Автор предлагает устройство управления люстрой с дешифрацией используемой команды. Если же дешифрацию не производить, как это иногда делают, освещение при управлении телевизором может переключаться случайным образом.

Кодировка команд, применяемых фирмами-производителями в системах дистанционного управления телевизоров, довольно разнообразна. В большинстве случаев команда передается последовательностью из нескольких (десяти и более) пачек импульсов различной длительности, причем информацию несут не только сами импульсы, но и паузы между ними. Например, команда ПДУ телевизора СК-3338ZR фирмы SAMSUNG содержит 11-13 пачек, каждая из которых состоит из 32 или 64 импульсов с частотой заполнения около 40 кГц. Длительность пауз между импульсами соответствует 32 или 64 периодам указанной частоты. При длительном нажатии на кнопку командные посылки повторяются с частотой примерно 9 Гц. Первые три пачки посылки не зависят от передаваемой команды, но для четных и нечетных нажатий на кнопки они разные - или короткая-длинная-короткая или короткая-короткая-длинная.

Коды команд ПДУ названного выше телевизора приведены в таблице. В ней применены такие обозначения: "0" - короткая пачка; "1" - длинная пачка; "|" - длинная пауза. Короткие паузы не указаны, поскольку во всех случаях между пачками есть какая-либо пауза. Приведены части команд, следующие за первыми тремя пачками, они содержат от 8 до 10 пачек импульсов. В таблице эти пачки выровнены по концам - так, как после приема они располагаются в сдвигающем регистре приемника команд.

ПДУ телевизора управляет люстрой

Автором разработано устройство, дешифрирующее команду SLEEP, его схема приведена на рис. 1. Сигнал с инфракрасного фотодиода VD1 усиливается специально предназначенной для этого микросхемой DA1 в станвключении. ее выхода (вывод10) пачки импульсов положительной полярности (рис. 2) поступают на вход узла, собранного на элементах VT1, R1, R2, C6, DD1.1. Этот узел превращает их в одиночные импульсы, длительность которых несколько превышает длительность пачек [1]. Использование транзистора VT1 вместо обычного для такого узла диода уменьшает нагрузку на микросхему DA1.

ПДУ телевизора управляет люстрой
(нажмите для увеличения)

Импульсы с выхода элемента DD1.1 инвертируются элементом DD1.2 и через дифференцирующую цепочку С7R3 поступают на одновибратор на элементе DD1.4 и запускают его. Длительность импульсов низкого уровня на выходе одновибратора - около 1,2 мс, что соответствует полусумме длительностей короткой и длинной пачек. Спадом импульсов с выхода одновибратора (перепадом уровней из лог. 0 в лог. 1) производится запись информации с выхода элемента DD1.1 в первый разряд сдвигающего регистра DD2.1 и DD2.2 и сдвиг ее в сторону возрастания номеров выходов. Если очередная принятая пачка была короткой, в момент окончания импульса одновибратора на выходе элемента DD1.1 присутствует уровень лог. 0, который запишется в разряд 1 регистра. Соответственно, при длинной пачке напряжение на выходе элемента DD1.1 соответствует лог. 1, она же и будет записана в регистр. В результате после окончания приема команды в регистре DD2.1 и DD2.2 сформируется информация о последних ее восьми пачках, причем о последней - в разряде 1. Напряжения на выходах микросхем при приеме команды SLEEP показаны на рис. 2 - в разрядах 1 и 4 регистра - лог. 1, а в остальных - лог. 0. Информация о длительности пауз при таком приеме теряется.

ПДУ телевизора управляет люстрой

Узел на элементе DD1.3 работает аналогично узлу на элементе DD1.1 - пока на выходе элемента DD1.2 присутствуют импульсы низкого уровня, на выходе DD1.3 - уровень лог. 0, после окончания команды на нем с небольшой задержкой появляется высокий логический уровень. Этот перепад уровней дифференцируется цепочкой С12R8 и в виде импульса положительной полярности поступает на вход элемента DD3.1 И-НЕ. Если была принята выбранная команда, этот элемент срабатывает и на его выходе формируется короткий импульс низкого уровня, переключающий в новое состояние цепочку из триггеров DD4.1 и DD4.2. Сигналы с их выходов управляют прохождением импульсов, соответствующих моменту перехода сетевого напряжения через нуль и подаваемых на вход элемента DD5.2. С его выхода через элементы DD5.1 и DD5.3 и транзисторы VT2 и VT3 эти импульсы поступают на управляющие электроды симисторов VS1 и VS2 (рис. 3). В анодные цепи симисторов включены лампы HL1-HL3 осветительной люстры. При многократной подаче команды SLEEP поочередно включаются одна лампа HL1, две лампы HL2 и HL3 или все три лампы, затем все они гаснут. Такой же результат получается при замыкании контактов микровыключателя SB1. Элементы R9, R10 и С13 подавляют дребезг контактов и защищают элемент DD3.1 от перегрузки.

ПДУ телевизора управляет люстрой

Показанный на рис. 3 узел питания и формирования импульсов, запускающих симисторы, несколько отличается от описанных автором ранее [2]. Вместо одного из диодов однополупериодного выпрямителя здесь установлен стабилитрон (VD5), а на управляющие электроды симисторов подаются импульсы довольно большой длительности - около 0,75 мс, середина которых соответствует моменту перехода сетевого напряжения через ноль. Ток, поступающий на управляющие электроды во время действия импульсов, составляет около 80 мА, что достаточно для надежного спрямления характеристик симисторов и беспомехового их включения в самом начале каждого полупериода.

При указанной выше скважности импульсов ток, расходуемый на одновременное включение двух симисторов, составляет в среднем около 12 мА. Такой ток вполне может обеспечить гасящий конденсатор С14 узла питания емкостью 0,68 мкФ. Импульсный характер потребления основной части тока приводит к большим пульсациям напряжения на конденсаторе фильтра С15. Их сглаживание обеспечивает интегральный стабилизатор DA2. Это дешевле, чем, например, применение конденсатора С15 вдвое большей емкости.

Устройство управления освещением собрано на двух печатных платах, изготовленных из двусторонне фольгированного стеклотекстолита толщиной 1,5 мм (на одной - элементы схемы рис. 1, на другой - рис. 3). Платы рассчитаны на монтаж в корпус выключателя-"дергалки", устанавливаемого в жилых домах под потолком.

Микросхема DA1 вместе с относящимися к ней деталями для защиты от электрических наводок прикрыта припаянным в нескольких точках экраном из тонкой меди.

Микровыключатель SB1 снабжен рычагом, выпиленным из органического стекла. На его конце закреплена тонкая бечевка, дергая за которую, можно управлять включением люстры вручную.

В устройстве можно применить микросхемы серий К176, К561, КР1561, DD3 заменима на микросхему ЛА8 указанных серий. Транзистор VT1 - любой маломощный кремниевый структуры n-p-n с коэффициентом передачи тока базы h21Э не менее 100, транзисторы VT2, VT3 средней или большой мощности с h21Э не менее 80 при токе коллектора 100 мА. Транзисторы VT4 и VT5 - практически любые кремниевые маломощные структуры p-n-p. Симисторы VS1 и VS2 - серии КУ208 в пластмассовом корпусе с индексами В1, Г1 или Д1 или ТС-106-10 на напряжение не менее 400 В (индекс после указанного обозначения - 4 или больше).

Диоды VD2-VD4, VD6 - любые кремниевые маломощные, стабилитрон VD5 - на напряжение 12 В и рабочий ток не менее 20 мА.

В качестве микросхемы DA2 можно использовать любой отечественный интегральный стабилизатор на напряжение -6В - КР1162ЕН6, КР1179ЕН6 или импортные - 79L06, 79M06, 7906 с любыми префиксами и суффиксами.

Все резисторы - МЛТ соответствующей мощности, конденсаторы - КМ-5, КМ-6, К73-16 (С14) и К52-1Б. На место оксидных конденсаторов допустимо установить К50-35 или их импортные аналоги.

Настройку устройства рекомендуется проводить в следующем порядке. Сначала на плате с деталями по схеме рис. 1 входы элемента DD5.2 соединить с общим проводом, а между верхними (по схеме) выводами резисторов R11 и R12 и цепью +6 В включить по любому светодиоду. После этого на контакты "+6 В" и "Общ." платы можно подать напряжение 6 В от лабораторного источника питания.

Нажимая на шток микровыключателя SB1, следует убедиться в поочередном включении и выключении светодиодов. Подавая команду SLEEP с ПДУ на фотодиод VD1 (с расстояния 0,5...1 м и при не очень ярком освещении), нужно проверить четкость работы устройства и при необходимости подобрать сопротивление резистора R4 для получения длительности формируемых на выходе одновибратора на элементе DD1.4 импульсов в пределах 1,1...1,3 мс. Эту работу лучше выполнить с помощью осциллографа с ждущей разверткой. При его отсутствии можно поставить на место R4 переменный резистор сопротивлением 220 кОм последовательно с ограничительным сопротивлением 51 кОм и определить диапазон сопротивлений, в котором обеспечивается прием команды. После этого на место R4 следует установить резистор с сопротивлением, соответствующим середине этого диапазона.

Для проверки платы с блоком питания (по схеме рис. 3) между ее контактами "+6 В" и "Общ." нужно впаять резистор 510 Ом любой мощности, подключить плату к сети и, соблюдая осторожность (все ее элементы находятся под напряжением сети), измерить напряжение между общим проводом платы и цепями "+6 В" и "-6В". Если они отличаются от номинальных не более чем на 0,5 и 1 В соответственно, платы можно соединить между собой и проверить работу устройства в сборе с нагрузками в виде осветительных ламп.

Литература

  1. Бирюков С. Подавление импульсов "дребезга" контактов. - Радио, 1996, № 8, с. 47, 51.
  2. Бирюков С. Симисторные регуляторы мощности. - Радио, 1996, № 1, с. 44-46.

Автор: С.Бирюков, г.Москва

Смотрите другие статьи раздела Телевидение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Стволовые клетки из пробирки 23.11.2012

Канадские и итальянские исследователи нашли "главный управляющий ген" для стволовых клеток человеческой крови. Ученые обнаружили, что с помощью включения и отключения данного гена можно получить эффективный способ выращивания стволовых клеток крови, пригодных для клинического использования.

Как заявил д-р Джон Дик, канадский профессор биологии стволовых клеток, ведущий ученый Центра восстанавливающей медицины и Института рака Онтарио (OCI), а также профессор кафедры молекулярной генетики Университета Торонто, открытие ученых вводит новую парадигму управления стволовыми клетками человеческой крови. Результаты исследования в ближайшее время будут напечатаны в журнале Cell Stem Cell.

"Впервые для человеческих кровяных стволовых клеток мы обнаружили, что новый тип некодирующих РНК, называемый микроРНК, предоставляет новую тактику управления такими клетками, открывающую дверь к выращиванию их в терапевтических целях", - сказал д-р Дик. В 2011 году д-р Дик выделил стволовые клетки человеческой крови в их чистейшем виде - как единичную стволовую клетку, способную восстановить всю кровяную систему.

Как сказал ведущий автор OCI д-р Эрик Лекман, исследовательская группа удалила главный управляющий ген - микроРНК 126, - который обычно руководит сотнями других генов, сдерживая их активность, что в свою очередь оставляет стволовую клетку в "спящем" неделимом состоянии. Метод заключался в создании чрезмерного количества областей связывания микроРНК 126 в стволовых клетках с помощью специально разработанного вируса.

"Вирус действует как губка, "стирая" конкретную микроРНК внутри клетки. Это позволяет подавленным генам стать более активными, после чего мы наблюдаем длительный рост стволовых клеток, без истощения или злокачественных изменений", - сказал д-р Лекман. - "Мы показали, что, удалив микроРНК, вы можете выращивать стволовые клетки, сохраняя их свойства неизменными. Это ключ к эффективному выращиванию стволовых клеток для использования на пациентах".

Другие интересные новости:

▪ Видеокарты с аппаратным ограничением майнинга

▪ HBA-плата HighPoint Rocket 750 подключает до 40 SATA 3.0 HD

▪ Твердотельные накопители M.2 512 ГБ от Transcend

▪ Искусственный интеллект распознает безмолвную речь

▪ Тонкие бюджетные источники питания на DIN-рейку от Mean Well

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дозиметры. Подборка статей

▪ статья Бетонные узоры на садовых дорожках. Советы домашнему мастеру

▪ статья Какое право получили в подарок футболисты сборной СССР за победу в Кубке Европы 1960 года? Подробный ответ

▪ статья Вертикально-сверлильный станок. Домашняя мастерская

▪ статья Датчик радиации в охранной системе. Энциклопедия радиоэлектроники и электротехники

▪ статья Попасть в игольное ушко. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026