Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Прибор для тестирования строчной развертки. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Телевидение

Комментарии к статье Комментарии к статье

При ремонте строчной развертки телевизоров довольно часто приходится сталкиваться с необходимостью проверки выходного трансформатора, отклоняющих катушек и подсоединенных к ним цепей. Но так как строчная развертка (главный потребитель энергии в телевизоре) тесно взаимодействует с блоком питания и узлами защиты, при нарушениях в ней устройство защиты срабатывает и проверить ее работу оказывается затруднительно.

Иногда, сразу же после включения телевизора, мгновенно выходят из строя мощные (так называемые силовые) транзисторы строчной развертки или источника питания. В таком аппарате вообще нельзя проверить выходной каскад и его элементы обычными методами.

В указанных случаях рекомендуется воспользоваться несложным способом тестирования строчной развертки, применив простой прибор-тестер. Проверяют только выходной каскад при выключенном телевизоре. Прибор позволяет определить, неисправен ли каскад, и выявить большинство дефектов выходного трансформатора и отклоняющих катушек.

При проверке с тестера на выходной каскад поступают питающее напряжение 15 В, которое за меняет напряжение 120...140 В, а также импульсы с частотой следования около 15625 Гц. Они имитируют работу выходного транзистора. Следовательно, проверка выполняется при пониженном напряжении питания, что совсем не мешает проконтролировать осциллографом и измерителем тока основные параметры каскада.

Принципиальная схема одного из возможных вариантов тестера изображена на рис. 1.

Прибор для тестирования строчной развертки
(нажмите для увеличения)

Он состоит из источника напряжения 15 В и генератора импульсов длительностью около 50 мкс с указанной частотой следования. Через ключ на мощном полевом транзисторе VT1 импульсы подают на выходной строчный трансформатор по схеме на рис. 2.

Прибор для тестирования строчной развертки

Генератор импульсов (см. рис. 1) построен на микросхемах DD1 и DD2. Собственно генератор собран на элементах DD1.1, DD1.2. Его работу при необходимости можно заблокировать выключателем SA1, соединяющим вывод 1 элемента DD1.1 с общим проводом. В результате прохождения импульсов генератора через дифференцирующую цепь C5R4 на выходе элемента DD1.3 получаются короткие импульсы, запускающие одновибратор DD2. Он, в свою очередь, вырабатывает выходные импульсы длительностью около 50 мкс. А так как частота следования коротких импульсов равна 15625 Гц, длительность пауз между выходными импульсами достигает 14 мкс. Они поступают на затвор полевого транзистора VT1, работающего в режиме ключа, и открывают его. Сток и исток транзистора VT1 подключены соответственно к коллектору и эмиттеру выходного (силового) транзистора строчной развертки (см. рис. 2). Причем сам транзистор развертки, если он исправен, выпаивать не нужно, так как он не мешает работе тестера.

Прибор содержит также (см. рис. 1) стабилизатор напряжения DA1 на 15 В, в выходную цепь которого включен стрелочный (у автора) измеритель тока РА1, потребляемого выходным каскадом строчной развертки. От этого же стабилизатора питаются микросхемы самого тестера.

Детали прибора размещают на печатной плате из стеклотекстолита (или на макетной плате). Ее располагают в небольшом пластмассовом корпусе. На его внешней панели закрепляют гнезда для подключения осциллографа и самого устройства к строчной развертке. Стрелочный измеритель тока можно не применять (тогда не нужны и резисторы R7, R8), а разместить на внешней панели тестера еще гнезда для подключения отдельного миллиамперметра. При этом предохранитель FU1 лучше оставить для защиты прибора.

Перед подключением тестера к телевизору необходимо проверить, нет ли короткого замыкания в цепи питания строчной развертки (тогда нужно искать дефект в этой цепи) и между выводами коллектора и эмиттера ее выходного транзистора. Повторим, что если транзистор пробит, его выпаивают. При отсутствии замыкания транзистор оставляют на месте.

Выходной каскад строчной развертки тестируют, измеряя потребляемый им ток и контролируя осциллографом форму и длительность импульсов обратного хода, которые возникают на стоке полевого транзистора VT1 во время работы тестера. Очевидно, что при питающем напряжении 15 В, в восемь-девять раз меньшем реального напряжения, амплитуда всех измеряемых импульсов будет в то же число раз меньше, чем в работающем телевизоре, однако их форма практически не изменится.

Потребляемый ток должен находиться в пределах от 5 до 70...80 мА (в зависимости от построения строчной развертки телевизора). Если потребление меньше, в выходном каскаде имеется обрыв. Это может быть или плохая пайка, или микротрещина в печатном проводнике, или обрыв первичной обмотки строчного трансформатора (что встречается довольно редко).

Если же ток превышает 80 мА, в каскаде имеется утечка. Она может быть как по постоянному, так и по переменному току. Для их разграничения выключателем SA1 блокируют работу генератора. При этом цепи строчной развертки должны потреблять постоянный ток 5... 10 мА. Если он превышает эти значения, проверяют выпрямительный диод и фильтрующий конденсатор источника питания, а также выпаивают выходной транзистор строчной развертки. Если ток все еще велик, следует по очереди отключать все элементы, соединенные с цепью питания.

После устранения неисправности в цепях питания контролируют ток при включенном генераторе тестера. Он должен находиться в пределах, указанных выше. Если же он превышает 80 мА, наиболее вероятной причиной утечки по переменному току может оказаться пробой в умножителе напряжения. Возможны также утечки во вторичных цепях строчного трансформатора или пробой между его обмотками. В импортных телевизорах в первую очередь следует проверить все выпрямительные диоды и конденсаторы вторичных источников питания, подключенных к строчному трансформатору ТДКС, а также убедиться в отсутствии короткого замыкания в какой-нибудь из этих цепей при их поочередном отключении. Очень часто причиной замыкания становится защитный стабилитрон, включенный параллельно источнику питания 12 В. Неисправность ТДКС не такое уж частое явление, и, скорее всего, утечка обнаруживается именно во вторичных цепях.

Если потребляемый ток в норме, то на экране осциллографа наблюдают импульсы обратного хода. Форма и полученная длительность импульсов свидетельствуют о том, имеется ли в цепях строчного трансформатора и отклоняющей катушки нужное согласование по времени и достигнут ли резонанс. Длительность импульсов должна находиться в пределах от 11 до 16 мкс. Она задана реактивными элементами выходного каскада: в основном индуктивностью строчного трансформатора и отклоняющей катушки, а также емкостью конденсаторов обратного хода и конденсатора, включенного последовательно с отклоняющей катушкой. Если длительность импульсов не соответствует норме, неисправность ищут именно в этих цепях.

В тестере можно использовать любые резисторы и конденсаторы. Резистор R7, при отсутствии промышленного, изготавливают из отрезка нихромового провода диаметром 0,2-0,4 мм. Резистор R6 составляют из двух или трех резисторов, соединенных последовательно.

Диодный мост КЦ405А можно заменить отдельными диодами, например, КД212А, а микросхему КР142ЕН8В - КР142ЕН8Е или LM7815. Ее необходимо разместить на небольшом теплоотводе, так как в процессе тестирования неисправного телевизора через стабилизатор могут течь относительно большие токи, вызванные утечками. Микросхема DD1 заменима аналогичной из серии К1561. Но можно и из серии К176, только тогда потребуется добавить для нее отдельный стабилизатор со стабилитроном на напряжение 10... 12 В. Микросхему КР1006ВИ1 можно заменить импортным аналогом LM555. На позиции VT1 допустимо использовать транзисторы 2SK2038, 2SK792, КП809Д.

Трансформатор Т1 может быть любой с напряжением на вторичной обмотке 16...19 В. Автором использован трансформатор ТПП252 с соединенными последовательно обмотками 11-12, 13-14, 15-16, 19-20. Микроамперметр РА1 - М2001 или подобный с током полного отклонения 50 мкА.

Налаживание тестера не сложно. Оно заключается в установке показаний миллиамперметра РА1 и подстройке необходимой частоты и длительности выходных импульсов тестера. Для калибровки шкалы миллиамперметра между гнездами "+ипИт" и "Общ." включают резистор сопротивлением 30 Ом и подстроечным резистором R8 устанавливают показания миллиамперметра 500 мА. При желании на шкале прибора можно пометить цветными метками пределы 5 и 80 мА. Далее подсоединяют к выводу 4 микросхемы DD1 осциллограф и подстроечным резистором R3 устанавливают частоту следования импульсов около 15625 Гц. После этого подсоединяют осциллограф к выводу 3 микросхемы DD2 и убеждаются в наличии на нем прямоугольных импульсов длительностью около 50 мкс. Незначительное отклонение частоты и длительности импульсов от указанных выше не имеет существенного значения. При необходимости длительность импульсов можно изменить, подобрав резистор R6 или конденсатор С6.

Для более надежной работы генератора на элементах DDI. 1, DD1.2 в него лучше добавить еще один элемент DD1.4, который остался свободным в микросхеме. Его включают, объединив входы, между точкой соединения выхода элемента DDI.2 и конденсатора С4 и левым (по схеме) выводом конденсатора С5. К точке соединения выхода нового элемента DD 1.4 и конденсатора С5 подключают правый (по схеме) вывод резистора R3, отключив его от выводов 3, 5. 6 микросхемы.

Автор: И.Коротков, п.Буча Киевской обл., Украина

Смотрите другие статьи раздела Телевидение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Самая маленькая черная дыра 30.10.2019

Астрономы Университета Огайо, изучающие черные дыры в нашей галактике, Млечном Пути, обнаружили то, что они считают новым типом черной дыры - самой маленькой из всех, ранее описываемых в науке.

Черные дыры образуются после того, как звезды умирают, разрушаются и взрываются, создавая гравитационные вихри, настолько сильные, что даже свет не может от них "сбежать".

До этого исследования астрономы обнаружили черные дыры, которые в 5-15 раз превышают массу нашего Солнца, а нейтронные звезды только в два раза больше массы Солнца. Но нейтронная звезда может разрушиться и превратиться в черную дыру, если она достигнет массы больше, чем масса Солнца в 2,5 раза. Тогда эта черная дыра будет расти.

Ситуация изменилась после того, как обсерватория гравитационных волн под названием LIGO обнаружила две черные дыры, сливающиеся в одну в галактике на расстоянии 1,8 миллиона световых лет. Две чудовищные черные дыры были в 31 раз больше массы Солнца

Это расширило известный диапазон черных дыр, предполагая, что они могут быть даже больше. Но как быть с теми дырами, которые существуют на границе нейтронных звезд и черных дыр?

Ученые обратились к данным APOGEE. Это эксперимент по галактической эволюции обсерватории Апач-Пойнт, который наблюдал свет от 100 000 звезд в Млечном Пути.

Так была обнаружена гигантскую красную звезду, вращающуюся вокруг чего-то меньшего, чем самая маленькая известная черная дыра, но больше, чем любая известная нейтронная звезда.

Считается, что самая эта черная дыра самая маленькая за всю историю наблюдений - она обладает массой в 3,3 раза больше массы нашего Солнца. Ранее самая маленькая обнаруженная черная дыра в 3,8 раза превышала массу нашего Солнца.

Другие интересные новости:

▪ Квантовые новинки IBM

▪ Влияние речи робота на доверие к нему людей

▪ Тюлени тоже болеют гриппом

▪ Соевый автомобиль

▪ Реконструирован пуп земли

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Видеотехника. Подборка статей

▪ статья Да благословит вас Бог, а я не виноват. Крылатое выражение

▪ статья Что такое музыка? Подробный ответ

▪ статья Измерение малых размеров без микрометра. Домашняя мастерская

▪ статья Сторожевой блокиратор системы зажигания. Энциклопедия радиоэлектроники и электротехники

▪ статья Бесстартерный запуск ламп дневного света. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025