Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Особенности работы модуля питания МП-403. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Телевидение

Комментарии к статье Комментарии к статье

Чтобы успешно ремонтировать радиоэлектронную аппаратуру, в частности телевизоры, необходимо хорошо представлять себе работу блоков и узлов устройства, знать назначение их элементов. Например, импульсные источники питания вызывают, как правило, большие затруднения при ремонте. В публикуемой здесь статье автор рассказывает о работе модуля питания МП-403, применявшегося во многих моделях телевизоров.

Телевизионный модуль питания МП-403 уже был рассмотрен в [1 и 2] с различной степенью подробности. Однако в [1] не совсем точно описан процесс запуска модуля и не рассказано о его основном автоколебательном режиме (дана ссылка на модуль МП-1). В книге же [2] из всего процесса запуска фактически пояснена только подача открывающего напряжения на базу ключевого транзистора VT9, а далее утверждается, что процессы запуска протекают так же, как в модуле МПЗ-3. Основной автоколебательный режим работы также не упоминается. Между тем при поиске неисправностей в импульсном модуле питания весьма важно знать работу в этих двух основных режимах. К сожалению, и начертание принципиальной схемы в обоих изданиях таково, что пользоваться ею неудобно.

В предлагаемой статье сделана попытка устранить названные пробелы, т. е. описать работу модуля при запуске, в установившемся автоколебательном режиме и в случае короткого замыкания пояснить назначение отдельных элементов и узлов, а также дать "читаемую" принципиальную схему. Она изображена на рисунке.

Особенности работы модуля питания МП-403
(нажмите для увеличения)

Устройство запуска модуля собрано на транзисторах VT4, VT6 и VT7. Два последних непосредственно обеспечивают запуск, а первый служит для их выключения при переходе модуля в автоколебательный режим.

После включения телевизора конденсатор С9 начинает заряжаться (через элементы R19, VD4, R14, R16) пульсирующим напряжением, образующимся на выпрямительном диоде VD7. Пока напряжение на конденсаторе С9 мало, транзистор VT4 закрыт. Транзистор VT7 открывается током базы, протекающим через резисторы R28, R25, R14, R16. На эмиттерный переход транзистора VT9 открывающее напряжение поступает через резисторы R28, R14, R16, транзистор VT7, эмиттерный переход транзистора VT6 и обмотку 5-3 трансформатора Т1. Транзистор VT9 начинает открываться.

Через обмотку 19-1 трансформатора протекает линейно нарастающий ток, который наводит в обмотке положительной обратной связи (ПОС) 5-3 ЭДС взаимоиндукции. Ток базы транзистора VT9, создаваемый обмоткой ПОС, проходит через элементы R27, VD11 и VT6. Коллекторный ток транзистора VT9, протекая через резисторы R14 и R16, обеспечивает на них нарастающее напряжение.

Достигнув определенного значения, напряжение на резисторах R14, R16 через цепь C5R11 (заряжая конденсатор) открывает тринистор VS1. Последний через дроссель L1, незаряженный конденсатор С7 и резисторы R14, R16 шунтирует эмиттерный переход транзистора VT9, замыкая часть тока обмотки 5-3 трансформатора на себя. В результате токи базы и коллектора транзистора VT9 уменьшаются, напряжение на обмотке 5-3 меняет полярность, транзистор и тринистор закрываются.

На вторичных обмотках трансформатора возникают импульсы напряжения, которые начинают заряжать конденсаторы фильтров вторичных выпрямителей. Так как токи зарядки большие (почти режим короткого замыкания), то напряжения на вторичных обмотках и обмотке ПОС (5-3) малы и быстро исчезают. Иначе говоря, энергия обмоток быстро передается незаряженным конденсаторам.

Снова током запуска через эмиттерный переход транзистора VT6 открывается транзистор VT9, насыщаясь затем током обмотки ПОС, открывается тринистор и закрывает транзистор VT9 и себя. Следовательно, происходит некоторое число циклов включения и выключения транзистора VT9, в течение которых конденсаторы С28, C31, C32, C34, C35 вторичных выпрямителей заряжаются до напряжений, близких к номинальным. Токи их подзарядки приобретают вид импульсов, экспоненциально снижающихся до нуля, что позволяет выйти модулю из режима короткого замыкания.

К этому времени конденсатор С9 успевает зарядиться до напряжения открывания транзистора VT4. Его коллекторный ток увеличивает падение напряжения на резисторе R28 и закрывает транзисторы VT7 и VT6 устройства запуска. Модуль переходит в автоколебательный режим работы, при котором уже заряжены конденсаторы С5, С7 (через диод VD6 от обмотки ПОС) и С8.

В установившемся режиме при открывании транзистора VT9 линейно нарастающий ток протекает через него так же, как и при запуске. На резисторах R14, R16 создается такое же по форме напряжение, которое складывается алгебраически с напряжением на конденсаторе С5 и через делитель R11R13 воздействует на управляющий электрод тринистора VS1. Пока сумма напряжений не станет положительной и не превысит некоторого значения (около 0,6 В), последний закрыт. Напряжение ПОС обмотки 5 - 3 создает ток базы транзистора VT9 через резистор R20 и транзистор VT5, поддерживая транзистор VT9 в открытом состоянии.

Транзистор VT5 служит узлом пропорционального управления током базы транзистора VT9. Кроме того, через него заряжаются конденсаторы С5, С8 и происходит открывание транзистора VT9. В установившемся режиме транзистор VT5 открыт напряжением конденсатора С5, приложенным через резисторы R17 и R20 к его эмиттерному переходу.

Увеличивающееся напряжение с резисторов R14, R16 через элементы С8 и R20 воздействует на эмиттерный переход транзистора VT5, пропорционально уменьшая его сопротивление проходящему через него току базы транзистора VT9, что обеспечивает примерно постоянную степень насыщения транзистора VT9 при увеличении тока его коллектора. Когда коллекторный ток транзистора VT9 увеличивается примерно до 3,5 А, сумма напряжений на резисторах R14, R16 и конденсаторе С5 становится достаточной для открывания тринистора VS1. Через него, дроссель L1 и резисторы R14, R16 напряжение на конденсаторе С7 приложено в закрывающей полярности к эмиттерному переходу транзистора VT9. Ток разрядки конденсатора направлен встречно току базы транзистора и превышает последний. Транзистор VT9 очень быстро закрывается, цепь разрядки конденсатора С7 через тринистор прерывается, ток последнего уменьшается, вызывая его закрывание.

На коллекторе транзистора VT9 и обмотках возникают импульсы напряжения, через обмотки протекают токи, которые подзаряжают конденсаторы фильтров. Уменьшаясь, они наводят на обмотке 5-3 напряжение ПОС (плюсом на выводе 5). Оно открывает коллекторный переход транзистора VT5 через резистор R17, диод VD5 и дроссель L1. В результате транзистор VT5 открывается в обратном направлении. При этом ток зарядки конденсатора С5 протекает через транзистор и элементы R20, VD5, L1. Одновременно подзаряжаются конденсаторы С7 (через диод VD6 и дроссель L1) и С8 (через коллекторный переход транзистора VT5 и резисторы R14, R16, R26).

Напряжением ПОС обмотки 5-3 транзистор VT9 поддерживается в закрытом состоянии через открытый в обратном направлении транзистор VT5 и резистор R20.

Когда токи подзарядки конденсаторов фильтров вторичных выпрямителей уменьшаются до нуля, напряжение на обмотке 5-3 также становится равным нулю. В этот момент напряжение конденсатора С5 открывает эмиттерный переход транзистора VT5 через резисторы R20 и R17, открывая сам транзистор в прямом направлении. Одновременно напряжение конденсатора С8 проходит через его коллекторный переход и обмотку 5-3 на эмиттерный переход транзистора VT9. При этом возникает начальный ток базы последнего и снова начинается нарастание его коллекторного тока под действием ПОС.

В режиме короткого замыкания во вторичной цепи при закрывании транзистора VT9 вся накопленная трансформатором Т1 магнитная энергия поглощается цепью, замыкающей вторичную обмотку. Ток нагрузки спадает намного медленнее, чем в нормальном режиме, из-за чего в обмотке ПОС 5-3 трансформатора практически перестает наводиться ЭДС (плюсом на выводе 5). Это вызывает не только прекращение зарядки конденсатора С8, но даже и его перезарядку в обратном направлении напряжением конденсатора С5 через резисторы R14, R16 и R17.

Так как транзисторы VT6, VT7 устройства запуска закрыты постоянно насыщенным транзистором VT4, транзистор VT9 не имеет никакого источника напряжения для первоначального открывания, а даже, наоборот, закрыт напряжением конденсатора С5 через резистор R17, коллекторный переход транзистора VT5 и обмотку 5-3 трансформатора Т1.

Следовательно, в отличие от модуля МПЗ-3, который при коротком замыкании работает в режиме коротких импульсов, модуль МП-403 полностью выключен. Поэтому если модуль питания был выключен узлом искусственного короткого замыкания на элементах VD16, R31, VT11, то для его повторного включения должен быть разряжен конденсатор С9. Для этого следует отключить телевизор от сети и затем снова включить через 5...10 с.

Назначение узлов и элементов модуля:

  • VD7-VD10, С10-С13, С17, С18 - выпрямитель напряжения сети;
  • VT1, VD3, С2, VD1, R5, R1-R3, С1, R7, С4 - узел стабилизации выходных напряжений;
  • VT2, VT3, R9, R6, R4 - устройство защиты от перенапряжений при неисправностях в узле стабилизации;
  • VT11, R31, VD16 - узел создания искусственного короткого замыкания для выключения модуля при неисправности строчной развертки (модуль МР-403) или по сигналу из блока управления;
  • VT13-VT15, VD18, R33, R34, R37- R39 - стабилизатор напряжения +12 В;
  • VT9 - силовой импульсный транзисторный ключ;
  • VS1 - тринистор управления моментом закрывания транзистора VT9;
  • С7 - конденсатор для закрывания транзистора VT9 через открытый тринистор (особенностью его работы следует указать то, что во время запуска ток через него течет в направлении, противоположном его паспортной полярности, что необходимо учитывать при оценке его надежности);
  • VD6 - коммутационный диод для зарядки конденсатора С7;
  • С5 - конденсатор для создания отрицательного напряжения смещения на управляющем электроде тринистора;
  • VD5 - коммутационный диод для зарядки конденсатора С5;
  • VD4 - диод, служащий для того, чтобы при запуске ток зарядки конденсатора С9 не проходил через управляющий электрод тринистора VS1 и не заряжал конденсатор С5 в обратном направлении;
  • С8 - конденсатор для начального открывания транзистора VT9 в автоколебательном режиме, входит вместе с элементами VT5 и R20 в узел пропорционального управления током транзистора VT9;
  • VT5 - коммутирующий транзистор узла пропорционального управления током базы транзистора VT9, обеспечивает зарядку конденсаторов С5 и С8;
  • R14, R16 - резисторы датчика тока транзистора VT9.

Действие устройства защиты модуля подробно описано в [1], [2], а работа узла стабилизации в автоколебательном режиме при номинальной нагрузке и на холостом ходу не имеет никаких отличий от применяемого аналогичного устройства в модуле питания МПЗ-3.

Литература

  1. Потапов А., Кубрак С, Гармаш А. Модуль питания МП-403. - Радио, 1991, №6, с. 44-46.
  2. Соколов В. С, Пичугин Ю. И. Ремонт цветных стационарных телевизоров 4УСЦТ. Справочное пособие. - М.: Радио и связь, 1995, с. 30-33.

Автор: И.Молчанов, г.Москва

Смотрите другие статьи раздела Телевидение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов.

В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам.

Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчивость к неблагоприятным условиям и помогают молодым кораллам адаптироваться к окружающей среде. Такие результаты подчеркивают критическую роль питания на ранних стадиях развития кораллов.

Научная работа стала важным шагом вперед в развитии аквакультуры и методов восстановления коралловых экосистем. Раннее питание личинок может существенно увеличить шанс их выживания, а значит, и потенциальный вклад в восстановление деградирующих рифов.

Следующим этапом стало перенесение лабораторных достижений в природные условия. Исследователи из UTS начали совместный проект с компаниями GBR Biology и Reef Magic, чтобы протестировать эффективность добавок непосредственно на Большом Барьерном рифе. Цель эксперимента - понять, насколько такой подход может поддерживать рост и приживаемость молодых кораллов в реальной экосистеме.

Хотя ученые признают, что ни один метод не способен полностью остановить деградацию рифов, они уверены, что научно обоснованные стратегии питания могут стать важным инструментом в комплексе мер по восстановлению кораллов.

В будущем подобные подходы могут сочетаться с другими технологиями, включая восстановление среды обитания и контроль стрессовых факторов, создавая комплексную систему защиты рифов. Это открывает новые перспективы для сохранения биоразнообразия океанов и устойчивого развития морских экосистем.

Другие интересные новости:

▪ Выведены яйца, не вызывающие аллергии

▪ Биоразлагаемый материал из оливковых косточек

▪ Получение водорода и кислорода из воды

▪ Системная плата Minisforum AR900i

▪ Солнечный ожог у китов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Средства медицинской защиты. Индивидуальная аптечка. Основы безопасной жизнедеятельности

▪ Что представляло собой исламское государство эпохи Средневековья? Подробный ответ

▪ статья Экономист из бухгалтерского учета и анализа хозяйственной деятельности. Должностная инструкция

▪ статья Индикатор влажности. Энциклопедия радиоэлектроники и электротехники

▪ статья Ответы на вопросы по конструкциям конвертеров MMDS. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Мне очень понравилось.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025