Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Практические схемы узкополосных усилителей мощности на полевых транзисторах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / ВЧ усилители мощности

Комментарии к статье Комментарии к статье

Усилители мощности, работающие в классе А, применяются редко. В основном это усилители ВЧ радиоприемных устройств с большой перегрузочной способностью. Практическая схема такого усилителя показана на рис.1. Входной L1С1-контур и выходной L2С2-контуры обычно синхронно перестраиваются и настроены на частоту входного сигнала.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.1. Усилитель мощности класса А на МДП-транзисторе

Эквивалентное сопротивление Rэ выходного контура Rэ=P2p2/(RL+Rн'), где р=Sqr(L2/C2), Rн' - сопротивление нагрузки, внесенное в колебательный контур; RL - активное сопротивление потерь; Р2 - коэффициент включения контура. Величина Rн'=Rн/n22, где n2 - коэффициент трансформации.

Добротность выходного контура при его полном включении Q=RэRi/(Rэ+Ri)2pfoL2 снижается из-за шунтирующего действия выходного сопротивления транзистора Ri. У мощных МДП-транзисторов Ri невелико и обычно не превышает десятков килоом. Поэтому для увеличения Q2 используется неполное включение контура.

Полоса пропускания выходного контура 2Df2=fo2/Q2, а частота резонанса fo2=l/2pSqr(L2C2). В КВ-диапазоне такой усилитель может обеспечить Ки до нескольких десятков. Важным показателем усилителя является уровень шумов. Шумовые свойства мощных МДП-транзисторов рассмотрены в работах [1].

На рис.2 показана практическая схема УМ на мощном МДП-транзисторе КП901А. Поскольку не ставилась задача получения малой полосы частот L2C2, контур включен непосредственно в цепь стока и шунтируется нагрузкой Rн=50 Ом. В классе А усилитель имел Ku=5(Ku=SRн) и Кр>20 на частоте f=30 МГц. При переходе в нелинейный режим выходная мощность достигала 10 Вт.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.2. Высокочастотный усилитель мощности на транзисторе КП901А

Двухкаскадный УМ (рис.3) выполнен на транзисторах КП902А и КП901А. Первый каскад работает в классе А, второй в классе В. Для обеспечения класса В достаточно исключить делитель из цени затвора второго транзистора. В усилителе использована широкополосная цепь связи между каскадами. На частоте 30 МГц усилитель обеспечивал Рвых=10 Вт при Ки>15 и Кр>100.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.3. Двухкаскадный усилитель на мощных МДП-транзисторах

Узкополосный усилитель на рис.4 предназначен для работы в диапазоне частот 144...146 МГц. Он обеспечивает усиление по мощности 12 дБ, уровень шумов 2,4 дБ и уровень интермодуляционных искажений не более 30 дБ.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.4. Узкополосный усилитель мощности для работы в диапазоне 144... 146 МГц

Резонансный усилитель на мощном МДП-транзисторе 2NS235B (рис.5) на частоте 700 МГц обеспечивает получение Рвых=17 Вт при КПД 40...45%.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.5. Резонансный усилитель мощности с рабочей частотой 700 МГц

Усилитель на рис.6 содержит цепь нейтрализации, уменьшающую до уровня -50 дБ уровень обратных наводок. На частоте 50 МГц усилитель имеет увеличение по мощности 18 дБ, уровень шумов 2,4 дБ и выходную мощность до 1 Вт.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.6. Малошумящий нейтрализованный УМ

В запатентованной схеме рис.7 (патент США 3.919563) на частоте 70 МГц достигнут реальный КПД, равный 90% при выходной мощности 5 Вт на частоте 70 МГц. Добротность выходного контура при этом равна 3.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис. 7. Ключевой усилитель мощности с КПД, равным 90%.

На рис.8 представлена схема трехкаскадного УМ на отечественных мощных МДП-транзисторах КП905Б, КП907Б и КП909Б.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.8. Трехкаскадный резонансный УМ диапазона 300 МГц (нажмите для увеличения)

Усилитель обеспечивает мощность в нагрузке 30 Вт на частоте 300 МГц. В первых двух каскадах используются резонансные П-образные согласующие цепи, а в выходном каскаде - Г-образная цепь на входе и П-образная на выходе. Зависимости КПД и Рвых от Uc и Рвыхэ и Кр от Рвх, полученные экспериментально и расчетным путем, представлены на рис.9.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.9. Зависимости параметров оконечного каскада трехкаскадного УМ
от напряжения питания (а) и входной мощности (б):
--- эксперимент; - - - расчет

При использовании УМ в АМ-радиопередатчиках (с амплитудной модуляцией) возникают трудности, связанные с обеспечением линейности модуляционной характеристики, т. е. зависимости Рвых от амплитуды входного сигнала. Они усугубляются при использовании резко нелинейных режимов работы, таких как класс С. На рис.10 представлена схема радиопередатчика КВ-диапазона с амплитудной модуляцией. Мощность передатчика 10,8 Вт при использовании мощного УМДП-транзистора VMP4. Модуляция осуществляется изменением напряжения смещения на затворе.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.10. Схема радиопередатчика КВ-диапазона с амплитудной модуляцией

Для уменьшения нелинейности модуляционной характеристики (кривая 1 на рис.11) в передатчике используется обратная связь по огибающей. Для этого выходное АМ-напряжение выпрямляется и полученный низкочастотный сигнал используется для создания ООС. Модуляционная характеристика 2 на рис.10 иллюстрирует существенное улучшение линейности.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.11. Модуляционная характеристика радиопередатчика в отсутствии (1) и при наличии (2) линеаризации

На рис.12 приведена принципиальная схема ключевого УМ с выходной номинальной мощностью 10 Вт и рабочей частотой 2,7 МГц. Усилитель выполнен на транзисторах КП902, КП904. Коэффициент полезного действия усилителя при номинальной выходной мощности 72%, коэффициент усиления мощности около 33 дБ. Усилитель возбуждается от логического элемента К133ЛБ, напряжение питания 27 В, пик-фактор напряжения стока выходного каскада равен 2,9. При соответствующей перестройке цепей связи усилитель с заданными параметрами работал в диапазоне 1,6...8,1 МГц.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.12. Ключевой УМ с выходной номинальной мощностью 10 Вт (нажмите для увеличения)

Для обеспечения заданной мощности на более высоких частотах необходимо увеличивать мощность возбудителя.

Конструктивно оба УМ были собраны на печатных платах с использованием стандартных радиаторов 100x150x20 мм, что объясняется стандартными размерами блока УМ в радиопередатчиках. Катушки индуктивностей в цепях связи - цилиндрические на ферритовых стержнях марки ВЧ-30 диаметром 16. Добротность катушек индуктивностей Q=150.

В качестве блокировочных дросселей в цепях питания стока транзисторов одноваттного усилителя и предварительного каскада 10-ваттного усилителя использовались стандартные дроссели с индуктивностью 600 мкГн. Дроссель питания в цепи стока транзистора КП904 - на ферритовом кольце, его индуктивность 100 МкГн.

На рис.13 приведена принципиальная схема ключевого УМ с номинальной выходной мощностью Рвых=100 Вт, предназначенная для использования в необслуживаемых радиопередатчиках КВ-диапазона. Усилитель содержит каскад предварительного усиления, обратный на двух транзисторах КП907. На входе VT1 включен согласующий П-образный контур С1L1С2C3.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.13. Ключевой УМ с номинальной выходной мощностью 100 Вт (нажмите для увеличения)

Оконечный каскад собран та шести транзисторах КП904А. Такое число транзисторов было выбрано по соображениям повышения КПД. Вместо транзисторов КП904Б можно включить также шесть транзисторов КП909 или три более мощных KП913. Оптимальный ключевой режим цепи стока обеспечивается формирующим контуром, содержащим элементы С14, С15, С16, L7.

Усилитель имеет общий КПД=62%. При этом электронный КПД выходного каскада составляет около 70%. Мостовая схема включения транзисторов предварительного каскада использована для сохранения работоспособности усилителя (хотя и с ухудшенными параметрами) при выходе из строя выходного транзистора. С этой же целью в истоки мощных транзисторов включены индивидуальные плавкие предохранители, назначение которых - отключать неисправный транзистор. Если в результате его пробоя в линейке транзисторов возникает режим, близкий к режиму короткого замыкания, это делает усилитель неработоспособным.

Параллельное включение мощных МДП ПТ не создает дополнительных трудностей при расчете и настройке УМ. Уменьшение КПД усилителя по сравнению с аналогичным по построению усилителем (см. рис.12) связано в основном с использованием транзисторов по мощности в 100-Вт усилителе. При снижении уровня выходной мощности до 50 Вт КПД усилителя возрастает до 85%, а электронный КПД -до 90%. Приведенные на рис.13 значения параметров элементов соответствуют частоте 2,9 МГц.

Пик-фактор напряжения на стоках транзисторов КП904 равен 2,8, а сами транзисторы работают в режиме, близком к оптимальному. Пик-фактор напряжения стока в каскадах на транзисторах КП907 равен П=2,1. Транзистор работает в ключевом режиме, однако оптимальность режима не обеспечивается, поскольку оптимальный ключевой режим для данных транзисторов при Uс=27 В и угле отсечки ф=90° был бы опасен из-за значительного пик-фактора, при котором напряжение на стоке может превысить максимально допустимое напряжение, равное 60 В для транзистора КП907.

На рис.14, а приведены экспериментальные и расчетные кривые, иллюстрирующие зависимости КПД, Рвых и hэ от угла отсечки тока стока. Из рисунка видно хорошее приближение расчетных данных к экспериментальным. Следует отметить что область возможных значений углов отсечки оказывается довольно узкой. Увеличению углов отсечки препятствует быстрый рост пик-фактора напряжения на стоке, а уменьшению - рост необходимого напряжения возбуждения, которое довольно скоро начинает совместно с напряжением смещения Uз превышать Uзи доп. Разумеется, при уменьшении уровня Рвыт диапазон возможных изменений углов отсечки тока стока расширяется.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.14. Зависимости выходной мощности и КПД от угла отсечки 0 (а)
и от температуры окружающей среды (б):
--- эксперимент; - - - расчет

Усилитель выполнен на печатной плате. В качестве теплоотвода использован радиатор размерами 130X130X50 мм. В цепях питания транзисторов КП907 использованы стандартные дроссели ДМ-01 индуктивностью 280 мкГн. Дроссели моста сложения намотаны на ферритовых кольцах ВК-30 диам.=26. Дроссель в цепи питания выходного каскада намотан на ферритовом кольце ВЧ-30 диам.=30. Катушка индуктивности в цепи связи выходного каскада с нагрузкой - воздушная, намотана посеребренной проволокой диам.=2,5, диаметр витка 30 мм, L=80 нГн.

Температурные зависимости выходной мощности РВых и КПД ключевого УМ с выходной мощностью 100 Вт приведены на рис.14,б. Из рассмотрения приведенных зависимостей видно, что в диапазоне -60...+60°С, входная мощность УМ изменяется не более чем на ±10%. Незначительное влияние оказывает температура и на КПД, который в указанном диапазоне изменяется на ±5%. При этом наблюдается падение выходной мощности и КПД с ростом температуры, связанное с уменьшением крутизны 5 с ростом температуры. В обычном диапазоне температур -60 ... +60° С изменение hэ и Рвых незначительно, причем это достигается без каких-либо специальных мер термостабилизации УМ. Последнее также является достоинством мощных МДП-транзисторов.

Литература:

  1. Схемотехника устройств на мощных полевых транзисторах. Справочник. Под редакцией В.П.Дьяконова.

Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела ВЧ усилители мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Солнце лишает Марс атмосферы 27.06.2025

Понимание процессов, определяющих судьбу планет, - ключ к разгадке как истории Солнечной системы, так и возможности существования жизни за ее пределами. Одним из самых интригующих объектов для подобных исследований остается Марс. Недавнее исследование, основанное на девятилетнем наблюдении, предоставило важные доказательства того, что Солнце активно разрушает атмосферу этой планеты гораздо быстрее, чем предполагалось ранее.

С помощью орбитального зонда MAVEN, работающего на орбите Марса с 2013 года, ученые смогли проследить, как потоки заряженных частиц, известных как солнечный ветер, буквально выбивают отдельные атомы из атмосферы планеты. Ключевым элементом наблюдений стал аргон - инертный газ, устойчивый к химическим превращениям. Его поведение позволило исследователям точно отследить вклад именно солнечного ветра, а не других факторов, в разрушение марсианской атмосферы.

Оказалось, что скорость утечки частиц в космос примерно в четыре раза превышает прежние теоретические расчеты. Особенно интенсивно этот процесс проходит во время солнечных бурь, когда активность звезды возрастает и усиливается поток частиц, обрушивающийся на планету. В отсутствие глобального магнитного поля, как на Земле, Марс остается полностью открытым для этого мощного воздействия.

Одним из следствий этой уязвимости стало постепенное исчезновение плотной атмосферы и воды с поверхности Марса. Ученые полагают, что этот процесс начался миллиарды лет назад, в эпоху повышенной солнечной активности. Именно тогда планета утратила свою способность удерживать влагу и, вероятно, часть условий, необходимых для поддержания жизни.

Если нынешние темпы разрушения сохранятся, то через несколько миллионов лет даже те остатки атмосферы, что существуют сегодня, полностью исчезнут. Но значение исследования выходит далеко за пределы истории одной планеты. Полученные данные помогают моделировать судьбу других планет, особенно экзопланет, не имеющих собственного магнитного щита.

Изучение взаимодействия солнечного ветра с атмосферой Марса не только проливает свет на прошлое Красной планеты, но и служит важным ориентиром в поиске пригодных для жизни миров за пределами нашей системы. Защитное магнитное поле, как показывает пример Марса, может быть одним из решающих условий для сохранения атмосферы - и самой жизни.

Другие интересные новости:

▪ Перья в янтаре

▪ Новый морозостойкий сорт малины с высокой лежкостью

▪ Созданы самые точные весы в мире

▪ На Эвересте тают ледники

▪ Петапиксельная камера

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПУЭ. Подборка статей

▪ статья Основные задачи в области гражданской обороны. Основы безопасной жизнедеятельности

▪ статья Отчего происходят нашествия саранчи? Подробный ответ

▪ статья Кабельщик-спайщик. Типовая инструкция по охране труда

▪ статья Переключаемая антенна BOX HA 80 м. Энциклопедия радиоэлектроники и электротехники

▪ статья Термины, применяемые в технической эксплуатации электроустановок потребителей, и их определения. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025