Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


УКВ трансвертерная приставка. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Описываемая трансвертерная приставка совместно с трансивером, имеющим диапазон 28 МГц, обеспечивает проведение связей в диапазоне 144 МГц. Выходная мощность приставки - 5 Вт, номинальная входная - 0,1 мВт. Коэффициент шума приемного тракта не превышает 5 дБ. Динамический диапазон по интермодуляции - не хуже 83 дБ (при измерении параметров приемной части приставка работала совместно с KB трансивером, имеющим чувствительность 1 мкВ и динамический диапазон по интермодуляции 90 дБ.)

Принципиальная схема приставки изображена на рис. 1.

УКВ трансвертерная приставка
(нажмите для увеличения)

В режиме приема сигнал с антенны через делитель С1C3, позволяющий подобрать оптимальную связь с точки зрения минимизации коэффициента шума. поступает на входной контур L1C1C3. На транзисторе VT1, включенном по схеме с общим истоком, собран усилитель РЧ. Применение мощного полевого транзистора КП902А позволило получить высокий (приблизительно 10) и устойчивый коэффициент усиления без нейтрализации проходной емкости. Усиленный сигнал подается на балансный смеситель на диодах VD3-VD6, где смешивается с напряжением гетеродина.

Гетеродин трансвертера - двухкаскадный, на транзисторах VT2, VT3. Кварцевый резонатор ZQ1 работает на третьей (если используется кварц на частоту 12,888 МГц) или пятой (кварц на 11,6 МГц) механической гармонике. Частоту генерации в небольших пределах можно изменить подбором конденсатора С11. Контур L5C12 настроен на частоту 116 МГц. Транзистор VT3 усиливает напряжение гетеродина до 7 В.

В режиме передачи сигнал с трансивера поступает на тот же самый кольцевой диодный смеситель, т. е. эта часть трансвертера является реверсивной. Преобразованный сигнал частотой 144 МГц выделяется контуром L2C5. Для того чтобы не шунтировать контур небольшим выходным сопротивлением транзистора VT1, установлен p-i-n диод VD1, который при передаче закрыт. В режиме приема он открыт прямым током и практически не снижает коэффициента передачи усилителя РЧ приемной части.

Выходной усилитель - четырехкаскадный, на транзисторах VT4-VT7. Первые три транзистора работают в режиме класса А, последний - в режиме АВ. Ток покоя транзистора VT7 стабилизирован диодом VD8 и остается постоянным при изменении температуры окружающей среды в широком диапазоне. Элементы С36, С38, R21 препятствуют самовозбуждению тракта передачи на инфранизких частотах.

На транзисторах VT8-VT12 и светодиодах VD10-VD14 собран пиковый аналого-дискретный индикатор отдаваемой мощности. Сигнал с коллектора транзистора VT8 можно подать в систему ALC KB трансивера. Порог ее срабатывания устанавливают подстроенным резистором R23, добиваясь минимума искажений сигнала в передающем тракте.

Трансвертерная приставка (за исключением индикатора мощности) собрана на печатной плате (рис. 2) из одностороннего фольгированного стеклотекстолита размерами 155Х90 мм, которую устанавливают на алюминиевой пластине таких же размеров толщиной 4...5 мм, используя подставки-колонки высотой 5 мм. Пластина выполняет функции теплоотвода. Все детали размешены на плате со стороны фольги. Для удобства монтажа во все отверстия желательно установить пистоны-заклепки. В точки, куда припаивают провода и выводы трансформаторов Ti и Т2, целесообразно установить монтажные штырьки или запрессовать отрезки медного луженого провода диаметром 0,8...1 мм. Приемная часть и гетеродин отделены от передающего тракта перегородкой высотой 25 мм из латуни или белой жести. Предварительно в ней просверливают отверстие диаметром 2 мм для вывода конденсатора С6.

Внешний вид приставки показан на рис. 3, внутренний - на рис. 4.

УКВ трансвертерная приставка
Рис.3

УКВ трансвертерная приставка
Рис.4

Транзисторы КТ368А можно заменить на КТ355А, КТ399А; КТ610А- на КТ610Б, КТ913А; КП902А - на КП905А; КТ922А - на КТ920А, КТ925А. Вместо диодов КД514А можно использовать АА112, АА120 или другие диоды с барьером Шоттки. Все указанные замены незначительно улучшают работу конструкции. Вместо диода КА507А применим любой p-i-n диод с меньшей, чем у него, емкостью или (с некоторым ухудшением коэффициента усиления) КД522А.

Блокировочные конденсаторы (КМ либо К10-23) могут иметь емкость в пределах от 1000 пФ до 0,33 мкФ. Переходные конденсаторы должны иметь емкость, указанную на схеме. Вместо подстроечных конденсаторов КТ4-21 применимы КТ4-25 емкостью 6...25 или 8...30 пФ.

Намоточные данные катушек приведены в таблице. Все катушки бескаркасные, выполнены посеребренным проводом диаметром 0,8 мм на оправке диаметром 5 мм. Дроссели L3. L6, L9, L11, L16 - ДМ-0,4 индуктивностью 20 мкГн; L4, L7-ДМ-3 на 1 мкГн; L17, L19 - ДМ-2,4 на 12 мкГн. Дроссели L7 и L4 можно заменить самодельными. Их изготавливают на резисторе МЛТ-0,25 сопротивлением 100 кОм, виток к витку, наматывая провод ПЭВ-2 0,1 до заполнения "каркаса".

Катушка Число витков
L1 1,75+1,25
L2, L12 0,75+4,25
L5 0,75+5,25+1
L8 1,75+1,75+3,5
L10 1,25+3,75
L13 6
L14, L18 2
L20 5

Дроссель L15 содержит 5 витков провода ПЭЛШО 0,3, размещенного на резисторе МЛТ-0,5 сопротивлением 100 Ом. Трансформаторы Т1 и Т2 выполнены на кольцевых (типоразмер К7Х4Х1.5) магнитопроводах из феррита 1000НН. Каждая из обмоток содержит 5 витков провода ПЭЛШО 0,23. Намотку ведут в три провода. Без ухудшения параметров трансвертера применимы ферритовые кольца (с магнитной проницаемостью не менее 50), ближайшие к указанному типоразмеру.

Реле К1 (из серии РЭС49) можно не устанавливать, однако при работе с внешним антенным реле, у которого большая емкость между контактами, либо при использовании дополнительного усилителя мощности передающий тракт может самовозбудиться.

Следует отметить, что гетеродин приставки устойчиво работает с кварцами, хорошо возбуждающимися на механических гармониках. На корпусе таких кварцевых резонаторов обычно указывают их третью, пятую или седьмую гармонику. Поэтому желательно применять резонаторы на частоту 116,58 или 38,666 МГц. Современные кварцы в миниатюрных металлических или стеклянных корпусах, предназначенные для работы на основной частоте, в данном трансвертере, как правило, также без труда возбуждаются на третьей и пятой гармониках.

Налаживание трансвертерной приставки начинают с настройки гетеродина. Сначала, удалив кварцевый резонатор, резистором R12 устанавливают на коллекторе транзистора VT3 постоянное напряжение 17 В. Затем подключают резонатор и определяют частоту гетеродина частотомером либо KB приемником с измерительной приставкой, описанной в [Л]. Если генерация отсутствует или частота отлична от 116 МГц, необходимо подобрать конденсатор С11, установив вместо него подстроечный. При этом следует учесть, что частота генерации кварцевого резонатора на третьей и более высокой механической гармонике может отличаться на несколько десятков килогерц от расчетной, что определяется конструкцией самого кварца.

После запуска кварцевого генератора настраивают в резонанс на частоту 116 МГц контуры L8C21 и L5C12.

При этом на правом по схеме выводе резистора R4 переменное напряжение должно быть не менее 5 В.

Налаживание приемной части заключается в установке на стоке транзистора VT1 напряжения 16 В и настройке в резонанс контуров L1C1C3 и L2C5. Если в распоряжении радиолюбителя есть генератор шума, то желательно конденсаторами С1, C3 подобрать оптимальную связь антенны с контуром.

Перед налаживанием передающего тракта к выходу трансвертера подключают эквивалент антенны сопротивлением 75 Ом. Затем резистором R13 устанавливают напряжение 6 В на коллекторе транзистора VT4, R15- 10 В на коллекторе VT5, R19 - 17,5 В на коллекторе VT6. Далее проверяют ток покоя транзистора VT7. Если он находится вне интервала 5...20 мА. необходимо подобрать диод VD8.

После этого вместо KB трансивера к приставке подключают генератор стандартных сигналов (Г4-18) и подают с него сигнал частотой 28,5 МГц и уровнем 0,1 В. Контролируя на эквиваленте антенны выходной сигнал трансвертера измерительным приемником и высокочастотным вольтметром, настраивают поочередно, начиная со входа, все контуры в резонанс. Эту операцию повторяют несколько раз. Напряжение на выходе передающего тракта должно быть не менее 20 В.

Если на выходе KB трансивера, совместно с которым работает приставка, используется лампа, то необходимо установить выключатель анодного напряжения выходного каскада.

Литература

  1. Жутяев С. УКВ трансвертер.- Радио, 1979, №1, с. 13-16.

Автор: А. Парнас (UB5QGN) г. Запорожье, Радио №11, 1988г.; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Перспективные графеновые фотоматрицы 23.06.2013

Использование новых графеновых сенсоров сделает фото- и видеокамеры в 1000 раз более чувствительными к свету.

Каждый человек вряд ли может быть довольным чувствительностью датчика своей собственной камеры когда дело касается съемки в условиях недостаточной освещенности. Но в недалеком будущем это может в корне измениться благодаря работе группы ученых из Сингапура, которые разрабатывают новую технологию производства светочувствительных датчиков для камер, основой которых является графен, материал, представляющий собой кристаллическую структуру из атомов углерода, толщиной всего в один атом. Использование нового датчика, предположительно, сделает будущие камеры в 1000 раз более чувствительными к свету, а количество используемой датчиком энергии снизится при этом минимум в 10 раз.

Повышенная чувствительность датчика позволит получать высококачественные фотоснимки в условиях слабой освещенности. При этом, по крайней мере именно так утверждают исследователи, новые графеновые датчики будут иметь стоимость в пять раз ниже, чем стоимость существующих CCD-датчиков, что означает, в свою очередь, что цены на камеры существенно понизятся в будущем. Графеновые датчики имеют высокую светочувствительность благодаря тому, что они более эффективно улавливают в свою ловушку фотоны света, а высокая электрическая проводимость графена позволяет снять с датчика и обработать сигналы намного более низкого уровня, нежели позволяют это сделать обычные полупроводниковые датчики.

Новые графеновые датчики могут использоваться не только в бытовых фото- и видеокамерах. Эти датчики имеют высокую чувствительность не только в диапазоне видимого света, но и в инфракрасном также. Поэтому такие датчики можно будет весьма эффективно применять в камерах, контролирующих движение на дорогах, инфракрасных камерах для приборов ночного видения и в камерах спутников, делающих высококачественные снимки земной поверхности.

Согласно заявлению профессора Ван Киджи (Wang Qijie) из Технологического университета Нанянга (Nanyang Technological University), графеновые датчики для камер разрабатываются таким образом, что их изготовление будет возможно с помощью существующих технологических производственных методов. Это означает, что новые датчики, на основе наноструктур из графена, легко и без технологических затруднений заменят CCD-датчики современных камер.

Пока еще рано для того, чтобы можно было точно сказать, когда именно графеновые датчики появятся в потребительских камерах. Быстрее всего, в первую очередь такие датчики найдут применение в более дорогостоящим промышленных камерах, камерах систем наблюдения и т.п. Помимо этого, графеновые технологии уверенно прокладывают себе путь и в другие области, что в недалеком будущем сделает использование графена господствующей тенденцией.

Другие интересные новости:

▪ Комплект Cool Bitts ICEbox для экспериментов с иммерсионным охлаждением

▪ Панорамная камера LG 360 CAM

▪ Новый метод квантового запутывания фотонов

▪ Фотоаппарат в очках

▪ Новый уникальный тип магнита

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электроснабжение. Подборка статей

▪ статья Теория электролитической диссоциации. История и суть научного открытия

▪ статья С какой скоростью могут летать птицы? Подробный ответ

▪ статья Полезные советы. Советы радиолюбителям

▪ статья Доработка динамиков ALPHARD TW-318. Энциклопедия радиоэлектроники и электротехники

▪ статья Пьезоэлектрические двигатели. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026