Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой регулятор громкости. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы тембра, громкости

Комментарии к статье Комментарии к статье

При построении Highf-End УМЗЧ встает проблема выбора ИМС регуляторов громкости. Такие известные ИМС, как TDA 1524/1526, ТСА740/730, КР 174ХА53/54, ТЕА6300/6310/6330, LM1036 имеют сравнительно большой для Hight-End УМЗЧ коэффициент шума (от -57 до -90 дБ).

Характеристики электронного регулятор громкости:
Коэффициент шума                  70 дБ
Коэффициент нелинейных искажений  0,001%
Неравномерность АХЧ               около нуля
Диапазон рабочих частот           0 - 100000 Гц
Входное напряжение                0,5 В
Выходное напряжение               0 - 0,5 В
Входное сопротивление             10 кОм
Напряжение питания                7 - 20 В

Цифровой регулятор громкости

Цифровой регулятор громкости

Такие параметры, как коэффициент интермодуляционных искажений (КИИ) и коэффициент шума определяются в основном качеством монтажа схемы. Этому параметру особое внимание. При плохом монтаже появляется емкосная и индуктивная связи, что приводит к повышению КИИ, неравномерности АХЧ и "подвозбудам". Структурная схема устройства показана на рис. 1. Оно состоит из цифровой схемы управления (1), идентичных блоков делителей напряжения для левого и правого каналов (2) и (3). Делитель напряжения построен на резисторах (рис. 2).

На микросхемах DD1, DD2 выполнены интегральные двунаправленные ключи, которые коммутируют нужный коэффициент деления входного напряжения. Устройство имеет семь коэффициентов деления. Номиналы резисторов не указаны. Пользователь сам выбирает нужный коэффициент деления подбором резисторов. Полное сопротивление цепочки резисторов должно быть 9-15 кОм. Некоторые рекомендации по выбору номиналов резисторов: R1 - должен иметь такое сопротивление, при котором уровень громкости очень малый (при котором хорошо засыпать), его номинал около 100 Ом при полном сопротивлении цепочки 10 кОм. Сопротивление резисторов (кОм) можно определить по формулам.

R1 = RU1/U

R2 = RU1/U - R1

R3 = RU1/U - R1 - R2

R4 = RU1/U - R1 - R2 - R3

R5 = RU1 - R1 - R2 - R3 - R4

R6 = RU1/U - R1 - R2 - R3 - R4 - R5

R7 = RU1/U - R1 - R2 - R3 - R4 - R5 - R6

R8 = RU1 - R1 - R2 - R3 - R4 - R5 - R6 - R7

R9 = RU1/U - R1 - R2 - R3 - R4 - R5 - R6 - R7 - R8,

где: R - полное сопротивление делителя (кОм); U - входное напряжение (мВ), U1 - напряжение, которое нужно получить на выходе (мВ).

Цифровой регулятор громкости
(нажмите для увеличения)

Резисторы рассчитывают в последовательности от R1 до R9. Коэффициент деления определяют по формуле:

К = U/ U1 = R/Rц,

где U, U1 - входное и выходное напряжения (мВ), R, Rц - сопротивление полное и цепочки (считая от R1 к нужному резистору).

Принципиальная схема цифрового блока управления показана на рисунке 3. В него входят узел управления на микросхеме DD1, реверсивный счетчик импульсов DD2, определяющий нужный уровень громкости дешифратор DD3, стабилизатор напряжения питания DA1. Выбор фиксированного уровня громкости производится кнопками SB1 и SB2. Дребезг их контактов устраняется элементами DD1.1 и DD1.2. При нажатии на кнопку SB1 ("+") на выходе элемента DD1.1 устанавливается низкий логический уровень. Этот уровень поступает на вход элемента DD1.3, на выходе которого появляется высокий логический уровень, переключающий счетчик на микросхеме DD2. Поскольку на входе управления направлением счета (вывод 10 МС DD2) высокий логический уровень с выхода элемента DD1.2, показания счетчика увеличиваются на единицу.

Когда на кнопку SB1 нажимают восьмой раз, счетчик досчитывает до восьми, и на выводе 9 DD3 появляется лог. "1". Начинает заряжаться конденсатор С5 через резистор R5, формируя импульс высокого уровня - счетчик сбрасывается, и процесс повторяется.

Когда нажимают на SB2 ("-"), на входе элемента DD1.2 появляется низкий логический уровень, сигнал которого переводит реверсивный счетчик DD2 в режим вычитания. Поскольку на вход 15 счетчика DD2 с выхода элемента DD1.3 поступает сигнал высокого уровня, счетчик срабатывается, и его показания уменьшаются на единицу. Конденсатор С2 обеспечивает задержку поступления счетного импульса на выход 15 микросхемы DD2 при переходе счетчика из режима суммирования в режим вычитания и наоборот. Условный номер уровня громкости (от 0 до 9) в виде четырехразрядного двоичного кода поступает со счетчика DD2 на дешифратор DD3. Дешифратор DD3 преобразует четырехразрядный двоичный код в позиционный, при этом на одном из его выходов появляется сигнал высокого напряжения, а на остальных - низкого. Сигналы по шине DL поступают на делители напряжения левого и правого каналов.

Активным уровнем является лог. "1". При подключении напряжения питания ток заряда конденсатора С4, протекающий через резистор R5, создает на нем импульс высокого уровня. В результате микросхема устанавливается в исходное (нулевое) состояние, при котором на выходе дешифратора (DD3) лог. "1", которая по шине DL поступает на блок делителей напряжения на вход управления двунаправленного интегрального ключа DD2.4 (рис. 2), который подключает точку соединения резисторов R1 и R2 к выходу устройства. Таким образом организовано управление.

В устройстве можно применить следующие электронные компоненты: резисторы МЛТ-0,125; конденсаторы С1 - С8, С10, С11 (рис. 3), С1, С2 (рис. 2) - керамические К10-17 или аналогичные; электролитический конденсатор С9 - фирмы SAMSUNG. Микросхемы можно заменить на аналогичные серий К176, К564, КР1561 или импортные. Интегральный стабилизатор (DA1) - любой с напряжением стабилизации 5 В. Устройство смонтировано на двусторонней фольгированной плате из стеклотестолита.

Фольга со стороны деталей используется в качестве экрана. Выводы элементов должны быть по возможности короче. Сигнальные провода, идущие к устройству, экранированные. Блокировочные конденсаторы распределяются следующим образом: С6 к DD1, С7 к DD2; C8 к DD3,C9,C10,C11 к DA1 (рис. 3); С1 к DD1, C2 к DD2 (рис 2) и припаиваются прямо к ножкам питания данных микросхем. Кнопки SB1 и SB2 выведены на лицевую панель УМЗЧ. Питается устройство от блока питания УМЗЧ. Над блоками 2 и 3 (рис. 1) обязательно должен быть экран из тонкой фольги.

Монтаж должен быть хорошо продуман, иначе регулятор будет работать НЕУСТОЙЧИВО. Устройство не требует регулировок, за исключением делителей напряжения (при необходимости). Если оно смонтировано без ошибок, то начинает работать сразу после подачи напряжения питания. Контроль работы цифровой части заключается в проверке счета формирования импульсов, поступающих с SB1 и SB2 в режиме суммирования и вычитания. Затем устройство подключают к УМЗЧ и проверяют возможность регулировки громкости.

Публикация: cxem.net

Смотрите другие статьи раздела Регуляторы тембра, громкости.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Одночиповый пакетный процессор для преобразования сигналов 27.03.2003

Компанией ZARLINK SEMICONDUCTOR объявлено о выпуске одночипового пакетного процессора для преобразования сигналов TDM в сигналы Metro Ethernet.

Этот процессор позволит передавать по сетям Ethernet большие объемы данных. Он может работать одновременно с 32 линиями T1 /E1 или с 1024 цепями TDM. Процессор очень гибок, он позволяет каждому каналу T1/E1 работать со своей синхронизацией.

Другие интересные новости:

▪ Насекомые стали мелкими, спасаясь от птиц

▪ Самый маленький мини-ПК от Smartvote

▪ Новый специализированный измеритель емкости

▪ Миниатюрные прецизионные АЦП MAX11259 и MAX11261

▪ Оригинал или копия

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Сварочное оборудование. Подборка статей

▪ статья Сохранение рыбы. Основы безопасной жизнедеятельности

▪ статья Почему Черный квадрат висит в Третьяковской галерее вверх ногами? Подробный ответ

▪ статья Работник книжного магазина. Типовая инструкция по охране труда

▪ статья Полуавтомат защиты радиоаппаратуры от перепадов напряжения сети. Энциклопедия радиоэлектроники и электротехники

▪ статья Микросхемы SPST: аналоговые ключи Maxim MAX4706 и MAX4707. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025