Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стабильный генератор ВЧ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Узлы радиолюбительской техники. Генераторы, гетеродины

Комментарии к статье Комментарии к статье

Предлагаемый генератор работает в диапазоне частот от 26560 кГц до 27620 кГц и предназначен для настройки СВ-аппаратуры. Напряжение сигнала с " Вых. 1 " составляет 0,05 В на нагрузке 50 Ом. Имеется и "Вых.2". к которому можно подключать частотомер при налаживании приемников. В генераторе предусмотрена возможность получения частотно-модулированных колебаний. Для этого служит "Вх. мод.", на который подается низкочастотный сигнал с внешнего генератора звуковой частоты. Питание генератора производится от стабилизированного источника +12 В.потребляемый ток не превышает 20 мА. Задающий генератор выполнен на полевых транзисторах VT1. VT2. включенных по схеме "общий исток - общий затвор".

Стабильный генератор ВЧ
(нажмите для увеличения)

Генератор, собранный по такой схеме, хорошо работает на частотах от 1 до 100 МГц. потому что в нем применены полевые транзисторы с граничной частотой >100 МГц. Согласно проведенным исследованиям [1]. этот генератор имеет кратковременную нестабильность частоты (за 10 с) лучшую, чем генераторы, выполненные по схемам емкостной и индуктивной трехточки. Уход частоты генератора за каждые 30 мин работы после двухчасового прогрева, а также уровни второй и третьей гармоник меньше, чем у генераторов, выполненных по схеме трехточки. Положительная обратная связь в генераторе осуществляется конденсатором С10. В цепь затвора VT1 включен колебательный контур С5...С8. L1. определяющий частоту генерации схемы.

Через небольшую емкость С9 к контуру подключена варикапная матрица VD1. Подавая на нее низкочастотный сигнал, изменяем ее емкость и тем самым осуществляем частотную модуляцию генератора. Питание генератора дополнительно стабилизируется VD2. Высокочастотный сигнал снимается с резистора R6. включенного в истоковые цепи транзисторов. К генератору через конденсатор С 11 подключен широкополосный эмиттерный повторитель на VT3 и VT4. Преимущества такого повторителя приведены в [2]. К его выходу через конденсатор С 15 подключен делитель напряжения (R14.R15). Выходное сопротивление по "Вых.1" равно 50 Ом. поэтому с помощью коаксиального кабеля с волновым сопротивлением 50 Ом к нему можно подключить схему с входным сопротивлением 50 Ом. например ВЧ-аттенюатор, опубликованный в [3]. К выходу эмиттерного повторителя подключен истоковый повторитель на VT5. Это позволило полностью исключить взаимное влияние нагрузок. подключенных к "Вых.1" и "Вых.2".

Детали. Конденсаторы С6...С10 - типа КТ6. Остальные конденсаторы: керамические - типа К10-7В. К10-17. электролитические - типа К50-35. Катушка L1 намотана на керамическом ребристом каркасе (размер по ребрам - 15 мм) посеребренным проводом диаметром 1 мм с шагом 2 мм. Количество витков -- 6.75. Намотка производится нагретым проводом с "натягом". Дроссель L2 - от черно-белых ламповых телевизоров (можно использовать и другие) индуктивностью от 100 до 300 мкГн. Резисторы - типа МЛТ-0.125. Полевые транзисторы можно применить любые из серии КП303. еще лучше - из серии КП307. Высокочастотные разъемы Х1...ХЗ - типа СР50-73ФВ. Транзистор VT3 - любой высокочастотный npn-типа. VT4 - высокочастотный pnp-типа.

Настройка. У некоторых экземпляров полевых транзисторов возможны паразитная релаксационная и прерывистая высокочастотная генерации. В этом случае требуется подбор резистора R6 и конденсатора С10. Для получения минимального значения температурного коэффициента частоты необходимо подобрать конденсаторы С6...С8 как с положительным, так и с отрицательным ТКЕ с учетом выводов. сделанных в статье [4]. Генератор необходимо поместить в экранированный корпус, изготовленный из латуни или из фольгированного стеклотекстолита. Этот высокочастотный генератор имеет только одну точку коммутации при переключении диапазонов, поэтому его легко выполнить на несколько диапазонов. Расчет колебательного контура на другие диапазоны можно выполнить по методике. приведенной в [5].

Литература

1. Котиенко Д.. Туркин Н. LC-генератор на полевых транзисторах. - Радио. 1990. №5. с.59.
2. Широкополосный повторитель напряжения. - Радио. 1981. №4. с.61.
3. ВЧ аттенюатор. - Радиолюбитель. KB и УКВ. 1996. №10. с.36.
4. Мухин В. Нестандартное поведение катушек индуктивности при нагревании. -- Радиолюбитель. 1996. №9. с.13. 14.
5. Маслов Е. Расчет колебательного контура для растянутой настройки. - Радиолюбитель, 1995. №6. с. 14-16.

Автор: О.Белоусов, Украина, Черкасская обл., г. Ватутино; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Узлы радиолюбительской техники. Генераторы, гетеродины.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Первый 200-вольтовый DirectFET транзистор 24.11.2007

Транзистор IRF6641TRPbF разработан для применения в изолированных DC/DC-конверторах с питанием от универсальной шины (36...75 В). Обладая ультранизким сопротивлением канала (51 мОм) и низким зарядом затвора, он идеально подходит для синхронных выпрямителей высокоэффективных сильноточных DC/DC-конверторов, работающих на высокой частоте, последнего поколения конверторов шины, привода постоянного тока, и даже для 48-вольтовых конверторов ветрогенераторов.

Кроме того, он может использоваться в сильноточных AC/DC-конверторах компьютеров и телекоммуникационных серверов с питанием от 48-вольтовой шины. Новый транзистор в корпусе DirectFET типа MZ при габаритах корпуса SO-8 и высоте корпуса 0,7 мм обеспечивает ток 25 А при минимальных потерях проводимости и переключения. Он заменяет до 3 транзисторов в корпусе SO-8 и экономит до 50% площади печатной платы.

Транзистор обеспечивает КПД синхронных выпрямителей до 95% - это тот же уровень КПД, что при удвоенном количестве транзисторов в корпусе SO-8 и выходном токе 7 А.

Другие интересные новости:

▪ Новая итерация сверхточных атомных часов

▪ Новые драйверы светодиодов от RECOM

▪ Цифровой ТВ-тюнер для Xbox One

▪ Конденсат Бозе-Эйнштейна приводит в действие фононный лазер

▪ Биохимическая перезагрузка глаза: лечение слепоты

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детская научная лаборатория. Подборка статей

▪ статья Телефон. История изобретения и производства

▪ статья Какой рост у пигмеев? Подробный ответ

▪ статья Определение скидок и надбавок к тарифам

▪ статья Изготовление гектографа. Простые рецепты и советы

▪ статья Поваренная соль разлагается электрическим током на электродах. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026