Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Генератор испытательных SSTV-сигналов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Все, кому хоть однажды приходилось заниматься аналого-цифровой техникой, знают, как сложно осуществить ее настройку без соответствующих приборов (осциллографа, генератора прямоугольных импульсов, частотомера). Узлы SSTV аппаратуры нуждаются в такой настройке.

Вильнюсским радиолюбителем Александром Власенко (UP3BD) разработан генератор испытательных SSTV - сигналов (подобные описаны в [1], [2], [3]). Он аналогичен тем, которые используются при сервисном обслуживании бытовых телевизионных приемников. Генератор воспроизводит испытательные сигналы специальной формы в стандартах SSTV - это белая сетка, черная сетка, шахматное поле, вертикальные и горизонтальные полосы, черное и белое поля, серый клин (градация от черного до белого). Генератор реализован на базе интегральных микросхем ТТЛ серии, двух диодах и пяти транзисторах.

Генератор испытательных SSTV-сигналов
Рис.1

Функциональная схема сигнал-генератора показана на рис. 1, где приняты следующие обозначения:

1 - задающий генератор;
2 - двоичный счетчик-делитель на шестнадцать;
3 - делитель на шестнадцать;
4 - делитель на два и восемь;
5 - формирователь формы испытательных сигналов;
6,7 - одновибраторы;
8 - коммутатор;
9 - схема управления;
10 - ЦАП (цифро-аналоговый преобразователь);
11 - ГУН (генератор, управляемый напряжением);
12 - ключ;
13 - ФНЧ (фильтр низших частот).

Принципиальная схема генератора испытательных SSTV-сигналов приведена на рис. 2. (56 Kb)

Задающий генератор реализован на элементах DD1.1; DD1.2; DD1.3. Собственно на элементах DD1.1 и DD1.2 собран автогенератор, в котором положительная обратная связь через конденсатор С1 охватывает два элемента. Элемент DD 1.1 выведен в линейный усилительный режим с помощью резистора отрицательной обратной связи R1. Элемент DD1.3 применяется здесь как буферный, чтобы уменьшить влияние нагрузки на частоту генератора. Конденсатор С1 и резистор R1 подобраны таким образом, чтобы на выходе элемента DD1.3 получить прямоугольные импульсы частотой 256 Hz. Эти импульсы с вывода 8 DD1.3 поступают на счетный вход двоичного счетчика-делителя на шестнадцать, вывод 14 DD2. С ее выходов (выводы 12, 9, 8, 11) двоичный код 1, 2, 4, 8 через схему управления на МС DD9 поступает на входы цифро-аналогового преобразователя, реализованного на элементах DD10.1; DD10.2 и DD11.1; DD11.2.

С вывода 11 МС DD2 прямоугольные импульсы частотой 16 Hz подаются на вход одновибратора (вывод 1 МС DD7), на его выходе (вывод 4) получим нормированные по длительности и частоте отрицательные импульсы строчной развертки SSTV (16 Hz - 5ms). Элементы времязадающих цепей МС DD7 R2 и С2 подбирается таким образом, что длительность выходного отрицательного импульса составляет 5 ms. В то же время, положительный импульс длительностью 5ms вывода 13 МС DD7, поступает на входы синхронного сброса (двувходовый элемент И, выводы 2 и 3 МС DD2, запрещающий действие импульсов по тактовым входам и сбрасывающий данные по всем триггерам, т.е. после каждого шестнадцатого импульса двоичного счетчика-делителя DD2 он обнуляется) . Таким образом, двоичный вход с выхода МС DD2 через схему управления на МС DD9 поступает на вход ЦАП (элемены DD10.1; DD10.2 и DD11.1; DD11.2.). Кодовый сигнал двоичного числа резисторной матрицей R1...R7 преобразуется в аналоговый, соответственно весовым кодам. В точке суммирования сигнала (эмиттер VT2) образуется периодический сигнал ступенчатого вида. Число градаций сигнала - 16 (Рис.3).

Генератор испытательных SSTV-сигналов
Рис.3

Кадровые синхроимпульсы формируются следующим образом. Прямоугольные импульсы с вывода 11 МС DD2 частотой 16 Hz делятся делителями на МС DD3 (на 16) и DD4 (на 2 и 8). С вывода 11 МС DD4 импульс, следующий с периодом 8s, запускает одновибратор на МС DD7 (вторая половина), на выходе которого (вывод 12) получаем кадровый импульс длительностью 30ms. Это достигается подбором времязадающей цепочки R3, C3.

Формирователь формы испытательных сигналов реализован на элементах МС DDS и МС DD6. Эпюры, иллюстрирующие его работу в различных точках, приведены на рис. 4. Сформированная последовательность сигналов управляет работой схемы управления на МС DD9 (четыре логических элемента 2ИЛИ), которая, в свою очередь, управляет работой ЦАП.

Генератор испытательных SSTV-сигналов
Рис.4

Импульсы строчной и кадровой синхронизации (выводы 4 и 12 DD7) через коммутатор на элементах DD8.1; DD8.2 запрещают работу ЦАП, открывают ключ на транзисторе VT1 и тем самым соединяют с общим проводом подстроенный резистор R9. Он и определяет падение напряжения на коллекторе транзисторов VT2 и VT3, которое подается на ГУН. Резистором R11 в цепи базы VT2 устанавливается амплитуда линейно изменяющегося напряжения ЦАП (рис. 3), а резистором R14 в цепи базы VT3 - его линейность.

Собственно ГУН собран на элементах DD12.1; DD12.2; DD12.3 и двух транзисторах (VT4, VT5). Диапазон изменения его частоты лежит в пределах от 2400 Hz до 4600 Hz - он определяется элементами С6 и R16. На элементе DD13.1 реализован счетчик-делитель на два. Сформированный импульсно-кодовый модулированный сигнал (ИКМ) с вывода 6 МС DD13 фильтруется LC фильтром низших частот с полосой пропускания до 3,4 kHz. Его нагрузкой является резистор R21, с помощью которого регулируется амплитуда выходного комплексного испытательного сигнала SSTV, подаваемого на вход SSTV-монитора. Этот сигнал можно подать и на микрофонный вход трансивера. В этом случае можно дать возможность Вашему корреспонденту настраивать свой монитор, не имея аналогичного генератора, прямо из эфира.

Увеличить прецезионность сигнал-генератора можно путем замены RC генератора на элементах DD1.1; DD1.2; DD1.3 на кварцевый с частотой 256 kHz, собранный по общеизвестным схемам, а затем поделить делителем с коэфициентом деления 1000 (например, тремя МС типа К155ИЕ 1).

Настройка генератора испытательных сигналов проводится следующим образом. Резистором R16 (верхний предел) и С6 (нижний предел) устанавливают диапазон изменения частоты ГУН, контролируя частоту частотомером на выводе 8 МС DD12. Она должна лежать в пределах 2400.. .4600 Hz, при напряжении 0...2,5 В на базе транзистора VT4. Резистором R9 устанавливают частоту 2400 Hz на выводе 8 МС DD12; при этом на ЦАП должен быть выдан сигнал запрещения с вывода 8 МС D8. Для этого отсоединяют выводы 1 2 и 13 МС DD1 от выходов одновибратора МС DD7 и на них через резистор 1,2 кОм от источника +5 В подают уровень логической единицы. Затем соединение восстанавливают. Резистором R11 устанавливают амплитуду линейно изменяющегося сигнала управления ГУН на базе VT4 в пределах +2,5 В, а резистором R14 - линейность его изменения. Контроль производят осциллографом, подсоединив его щуп к базе транзистора VT4. Последним этапом настройки является установка временных интервалов, формируемых сдвоенным одновибратором на МС DD7. Их устанавливают путем подбора RC время-задающих элементов, контролируя при этом длительность сформированного отрицательного импульса на выводах 4 и 12 МС DD7. Для строчных (вывод 4) она должна быть равна 5 ms, для кадровых - 30 ms (вывод 12). Так как период следования импульсов на выводе 12 МС DD7 равен 8 s, то наблюдать его на экране осциллографа долго и неудобно. Поэтому, отсоединив вывод 9 МС DD7 от вывода 11 МС DD4, соединяют его с выводом 11 МС DD2, устанавливают длительность импульса с выхода МС DD7 равной 30 ms, затем восстанавливают соединение согласно принципиальной схеме.

Порядок работы с генератором испытательных сигналов несложен. Подав на него напряжение питания +5 В, соединяют его выход со входом SSTV-монитора, устанавливают переключатель формы испытательных сигналов S1.1 и S1.2 в положение серый клин (градации) и резистором R21 устанавливают уровень сигнала таким, чтобы на экране монитора были видны вертикальные полосы, меняющиеся по тому (всего 16) от белого до черного. Затем просматривают другие сформированные изображения путем поочередного переключения переключателей S1.1 и S1.2.

С помощью описанного генератора испытательных сигналов были настроены SSTV-мониторы на станциях UA2FDX, UA2FEP, UA2FGF.

Литература:

  1. SSTV; Funkamateur, 3(1979) s.140-143.
  2. П.Балабански и др., "SSTV-техника" София 1985, стр.121...127.
  3. Scheichel. W., SSTV Blldmusterfenerator; Fuakschau 48(1976), HW. S.957FF.

Автор: Коваленко Д.А. (UA2FDX) г. Черняховск; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Модель для прогнозирования распада витаминов в космосе 20.09.2019

Команда ученых-диетологов из Университета Массачусетса в Амхерсте разработала новаторскую, удобную для пользователя математическую модель для NASA, которая должна гарантировать, что пища астронавтов останется богатой питательными веществами во время длительных полетов в космосе.

Новое исследование дает NASA возможность сэкономить время для прогнозирования деградации витаминов в космическом полете с течением времени и для более точного и эффективного планирования повторных поставок. Исследование финансировалось из гранта NASA в размере 982 685 долларов.

"В литературе не было никакой информации, позволяющей прямо ответить на вопросы и проблемы, которые были у NASA. Мы использовали данные реального времени в нашем исследовании для обучения математической модели и определения того, насколько прогнозной и надежной будет модель" - сказал автор исследования, Хан Сяо, профессор и ученый Clydesdale Scholar of Food Science.

Сяо и его коллеги впервые показали, как тиамин (витамин В1) разлагается в течение двух лет в трех вариантах меню команды: коричневый рис, суп из гороха и говяжья грудинка. Сяо говорит, что было "довольно неплохо" обнаружить, что суп из коричневого риса и гороха, хранящийся при 20 °C, продемонстрировал устойчивость к разложению тиамина. При этом тиамин в грудинке из говядины был гораздо менее стабильным, сохранив только 3 процента витамина через два года.

Исследователи отмечают, что NASA подчеркивает важность естественного получения питательных веществ из пищи. "Это предпочтительнее для лучшего здоровья", говорит Сяо. "Все больше исследований показывают, что ваше тело принимает таблетки витаминов не так, как из настоящих продуктов, таких как гороховый суп".

Другие интересные новости:

▪ Skype-телефон от ASUS

▪ 4К дисплей со сверхшироким цветовым охватом

▪ Компактная видеокамера Sony FDR-X3000R

▪ Съедобная батарейка

▪ Новые микросхемы семейства Bluetooth

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоуправление. Подборка статей

▪ статья Роза Люксембург. Знаменитые афоризмы

▪ статья Какая рыба не является холоднокровной? Подробный ответ

▪ статья Омежник. Легенды, выращивание, способы применения

▪ статья Усилитель на микросхеме TDA1518, 2х11 ватт. Энциклопедия радиоэлектроники и электротехники

▪ статья Летающие пробки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025