Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Справочные материалы

 Комментарии к статье

Микросхемы ВТ7106 и ВТ7107 представляют собой высококачественные 3,5-разрядные аналого-цифровые преобразователи с малым энергопотреблением и прямым выходом на индикатор. Все активные компоненты, необходимые для работы преобразователя, содержатся в кристалле КМОП-микросхемы. В нее включены: блок аналого-цифрового преобразования напряжение - код; дешифратор семисегментных индикаторов; интерфейсная схема, управляющая индикатором (только для ВТ7106); источник опорного напряжения и тактовый генератор. ВТ7106 предназначена для работы с жидкокристаллическим индикатором, а ВТ7107 - со светодиодным.

Микросхема сочетает в себе высокую точность и экономичность. Величина ухода нуля не превышает 100 мкВ для диапазона 2 В и 10 мкВ для диапазона 200 мВ, величина входного тока - 10 дА, ошибка счета - одну единицу младшего разряда. Встроенная система корректировки нуля устраняет его смещение без использования внешней системы установки. Микросхемы размещаются в 40-выводных корпусах типа ДИП, их цоколевка приведена на рис. 1. Функциональное назначение выводов приведено в табл.1, предельные режимы эксплуатации (при температуре 25°С) - в табл.2, электрические параметры схемы (при напряжении питания 10В, температуре 25°С, частоте тактовых импульсов 48 кГц, если не оговорено иное) - в табл.3.

Особенности микросхем:

  • нулевые показания индикатора при нулевом входном напряжении;
  • правильное определение полярности входного сигнала при очень малом, в пределах точности измерений, входном сигнале;
  • малый уровень входного шума;
  • небольшая мощность (6 мВт), потребляемая микросхемой от источника питания (без учета энергии, расходуемой ЖКИ или светодиодным индикатором);
  • высокоомный дифференициальный КМОП-вход (входное сопротивление - порядка 1012 Ом);
  • прямой выход на ЖКИ-индикатор для ВТ7106 и на светодиодный индикатор для ВТ7107;
  • отсутствие дополнительных активных компонентов;
  • высокая линейность преобразования (ошибка - менее единицы младшего разряда);
  • наличие внутреннего источника опорного напряжения с малым температурным дрейфом;
  • возможные применения: щитовые цифровые измерительные приборы, цифровые мультиметры, термометры, измерители емкости, РН-метры, фотометры и т.п.
Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные. Корпус микросхем типа ДИП
Рис. 1. Корпус микросхем типа ДИП

Таблица 1

Номер вывода Обозначение вывода Описание вывода
1 V+ Положительный вывод источника питания
2 D1 Вывод управления секцией D индикатора единиц
3 С1 Вывод управления секцией С индикатора единиц
4 В1 Вывод управления секцией В индикатора единиц
5 А1 Вывод управления секцией А индикатора единиц
6 F1 Вывод управления секцией F индикатора единиц
7 G1 Вывод управления секцией G индикатора единиц
8 Е1 Вывод управления секцией Е индикатора единиц
9 D2 Вывод управления секцией 0 индикатора десятков
10 С2 Вывод управления секцией С индикатора десятков
11 В2 Вывод управления секцией В индикатора десятков
12 А2 Вывод управления секцией А индикатора десятков
13 F2 Вывод управления секцией F индикатора десятков
14 Е2 Вывод управления секцией Е индикатора десятков
15 D3 Вывод управления секцией D индикатора сотен
16 ВЗ Вывод управления секцией В индикатора сотен
17 F3 Вывод управления секцией F индикатора сотен
18 ЕЗ Вывод управления секцией Е индикатора сотен
19 АВ4 Вывод управления обеими половинами индикатора 1 тысячи
20 POL Вывод управления знаком минус индикатора
21 ВР
GND
Общий вывод индикатора ЖКИ (для ВТ7106)
Общий провод ("земля") цифровой части (для ВТ7107)
22 G3 Вывод управления секцией G индикатора сотен
23 A3 Вывод управления секцией А индикатора сотен
24 СЗ Вывод управления секцией С индикатора сотен
25 G2 Вывод управления секцией G индикатора десятков
26 V- Отрицательнй вывод источника питания
27 VINT Выход интегратора
28 VBUF Вывод подключения интегрирующего резистора
29 CAZ Вывод подключения конденсатора автоматической установки нуля
30 V-N Аналоговый вход низкого уровня
31 V+N Аналоговый вход высокого уровня
32 АС Аналоговая "земля"
33 C-REF Вывод подключения конденсатора опорного напряжения
34 C+REF Вывод подключения конденсатора опорного напряжения
35 V-REF Вывод подключения внешнего опорного напряжения
36 V+REF Вывод подключения внешнего опорного напряжения
37 TEST Контрольный выход
38 OSC3 Вывод подключения конденсатора генератора тактовых импульсов
39 OSC2 Вывод подключения резистора генератора тактовых импульсов
40 OSC1 Общая точка соединения резистора и конденсатора генератора тактовых импульсов

Таблица 2

Наименование параметра, единица измерения Обозначение Параметр
Напряжение питания
от V-доV+
VMAX 15
Входное аналоговое напряжение, В VВХ MAX от V-доV+
Опорное входное напряжение, В VОП MAX от V-доV+
Амплитуда тактовых импульсов, В VА MAX от GND доV+
Рассеиваемая мощность, Вт NMAX 0,8
Рабочая температура кристалла, °С TOPR 0...70
Температура хранения, °С TSTG -55...+150

Таблица 3

Наименование параметра, единица измерения Обозначение Норма Режим измерения
Мин Тип Макс
Напряжение питания (ВТ7106), В VПИТ 7 10 12 -
Напряжение обоих источников питания (ВТ7 107), В VПИТ 3,5 5 6 -
Ток, потребляемый от источника питания (исключая ток светодиодов для ВТ7107), мА IDD - 0,6 1,0 VN=0
Входной ток утечки, пА ILEAK   1 10 VN=0
Напряжение управления сегментом АВ4 (ВТ7106), В VLCDS 4 5 6 -
Ток управления сегментом (кроме АВ4, ВТ7107), мА ILED 5 7 - Напряж. на сегменте 3В
Ток управления сегментом АВ4 (ВТ7107), мА ILED1 10 15 - Напряж. на сегменте 3В
Напряжение аналоговой "земли" (по отношению к выводу положит. источника питания), В VANACOM 2,7 3,0 3,3 25 кОм между землей и положительным выводом источника питания
Уровень шумов (от пика до пика), мкВ VN - 15 - При VN=0 на диапазоне 200 мВ
Показания счетчика при нулевом входном напряжении   -000,0 ±000,0 +000,0 При VN=0 на диапазоне 200 мВ
Относительные показания счетчика   999 999/1000 1000 При VN=VREF=100мВ
Линейность преобразования (максимальное отклонение от идеальной прямой линии), число единиц младшего разряда   -1 ±0,2 +1 На диапазоне 200мВ или 2В
Дрейф нуля мкВ/ °С   - 0,2 1 VN=0,TOPR=0...70 °C
Ошибка разбалансировки, число единиц младшего разряда   -1 ±0,2 +1 V-N=V+N=200 мВ
Нелинейность коэффициента преобразования, мкВ/В CMRR - 50 200 VCM=±1 В, VN=0 В, диапазон 200 мВ

Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные. Схема включения БИС BT7106
Рис. 2. Схема включения БИС BT7106

Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные. Схема включения БИС BT7107
Рис. 2. Схема включения БИС BT7107

Микросхема ВТ7106 питается от одного источника напряжением 9... 10 В, положительный полюс которого подключается к выводу 1, отрицательный - к выводу 26. Для питания ВТ7107 необходимы два источника по 5 В. Общей точкой обоих источников является вывод 21, +5 В подается на вывод 1, -5 В - на вывод 26. Схема включения БИС ВТ7106 приведена на рис. 2, а ВТ7107 - на рис. 3.

Микросхемы работают следующим образом (рис. 4). Измеряемое напряжение подается на интегрирующий конденсатор CINT в течение фиксированного интервала времени, определяемого тактовым генератором. Накопленный конденсатором заряд будет пропорционален входному напряжению при условии постоянства тактовой частоты и входного тока.

Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные. Принцип работы миекросхем
Рис. 4. Принцип работы микросхем

Затем этот конденсатор разряжается до нуля опорным сигналом с полярностью, противоположной входному. Интервал времени, необходимый для разряда интегрирующего конденсатора, измеряется счетчиком счетных импульсов, для того чтобы вывести результат на дисплей. Он пропорционален средней величине входного сигнала в течение времени интегрирования.

Публикация: cxem.net

Смотрите другие статьи раздела Справочные материалы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Модель протуберанца 03.08.2000

В отделе прикладной физики Калифорнийского технологического института (США) реализована модель солнечных протуберанцев.

Протуберанцы представляют собой плазму - раскаленный газ из свободных электронов и положительных ионов. Долгое время было неизвестно, почему эти выбросы солнечной атмосферы принимают такие разнообразные формы. Сейчас считается, что форма, размер и скорость протуберанцев (а они иногда долетают до Земли) определяются взаимодействием магнитных полей и электрических токов в проводящей плазме.

Физики смоделировали процесс развития протуберанца, пропуская через плазму в вакуумной камере ток напряжением около 6000 вольт и силой до 60 килоампер, прилагая одновременно магнитное поле, в несколько тысяч раз более интенсивное, чем магнитное поле Земли.

Другие интересные новости:

▪ Итальянский секрет долголетия

▪ Беруши в нос для желающих похудеть

▪ Эргономичные компоненты Samsung для LED-светильников

▪ Карты памяти SanDisk Extreme Pro CFast 2.0

▪ Сверхтонкий DVD-привод Samsung для планшетов на Android

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дозиметры. Подборка статей

▪ статья Мессалина. Крылатое выражение

▪ статья Как археологи узнают, что они находят? Подробный ответ

▪ статья Функциональный состав телевизоров Akai. Справочник

▪ статья Контроль частоты вращения воздушного винта. Энциклопедия радиоэлектроники и электротехники

▪ статья Защита электрических сетей напряжением до 1 кВ. Места установки аппаратов защиты. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Юрий Гаврилович
Работникам библиотеки огромное спасибо! Очень грамотно и доходчиво [up] [!]


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025