Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Двухтактно-параллельный усилитель НЧ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Усилители мощности ламповые

 Комментарии к статье

При работе двухтактного каскада в режимах с отсечкой анодного тока в области частот выше 2...3 кГц возникают специфические нелинейные искажения, возрастающие с повышением частоты. Причиной тому является неидеальная магнитная связь (потокосцепление) между половинами первичной обмотки и между каждой половиной первичной обмотки и всей вторичной обмоткой выходного трансформатора. Переходные процессы искажают форму анодного тока ламп, и на осциллограмме анодного тока появляется характерный провал.

В тех же условиях нелинейные искажения в области низших звуковых частот обусловлены индуктивностью первичной обмотки трансформатора и успешно компенсируются глубокой обратной связью. Искажения же на высших частотах обратной связью не компенсируются. Поэтому при проектировании усилителей, работающих в режиме АВ или В, часто идут на компромисс по искажениям на низших и высших частотах либо применяют режим А.

Описываемый усилитель при работе в режиме класса АВ дает без компромисса минимальные искажения на низших частотах вследствие очень хорошей частотной и фазовой характеристик при глубокой обратной связи, а также на высших частотах благодаря сведению до минимума индуктивности рассеяния.

Принципиальная схема двухтактнопараллельного каскада приведена на рис. 1. Отличительной особенностью этого усилителя является параллельное включение ламп относительно общей нагрузки. Выходной трансформатор имеет две первичные обмотки, каждая из которых состоит из двух секций - катодной и анодной, причем катодная и анодная обмотки ламп противоположных плеч намотаны вместе, в два провода, что практически устраняет индуктивность рассеяния. Направления переменного тока в анодных и катодных секциях разных ламп совпадают, и переменное напряжение между ними равно нулю.

Двухтактно-параллельный усилитель НЧ

Это обстоятельство дает возможность заменить принципиальную схему эквивалентной схемой, изображенной на рис. 2. Из нее видно, что усилитель с двухтактно-параллельным включением ламп охвачен глубокой обратной связью по напряжению при коэффициенте обратной связи = 0,5, так как половина выходного напряжения U2 на нагрузке Zа подается в противофазе к напряжению возбуждения лампы одного плеча U1/2.

Суммарное приведенное сопротивление обеих ламп, работающих на общую нагрузку, равно Ri/(2+ ), где - коэффициент усиления лампы. При условии >>2 это сопротивление оказывается вдвое меньше приведенного сопротивления двухтактного катодного повторителя - 2Ri/(1+ ). Уменьшение приведенного сопротивления двухтактно-параллельного каскада, несмотря на меньшую величину коэффициента обратной связи , объясняется параллельным включением ламп, в то время как в двухтактном катодном повторителе лампы включены последовательно.

и условии, что эквивалентное сопротивление нагрузки много больше приведенного сопротивления ламп, т. е. Za>>Ri/(2+ ), коэффициент усиления двухтактно-параллельного каскада близок к единице.

Глубину обратной связи в таком каскаде можно оценить, сравнивая усиление двухтактно-параллельного и обыкновенного двухтактного каскада. Принимая коэффициент нагрузки для пентода =0,25, для каскада на двух лампах 6ПЗС с выходным сопротивлением Ri=22 кОм и средней крутизной S=6 мА/В определим коэффициент усиления.

K0=SRa=Sa Ri=6.10-3.0,25.22 .103=33

Отсюда глубина обратной связи двухтактно-параллельного каскада

Аос=1+ К0=1+0,5.33=17,5=25 дБ.

Двухтактно-параллельный каскад, используемый в трех- или четырехкаскадном усилителе, может быть охвачен и общей ООС глубиной 10...12 дБ. Таким образом, ООС в оконечном каскаде увеличивается до 35... 37 дБ в широкой полосе частот, значительно улучшая все электроакустические характеристики усилителя.

При охвате последних трех каскадов усилителя общей цепью ООС приведенное сопротивление ламп оконечного каскада становится равным при двух лампах в оконечном каскаде:

Ri oe=Ri/[(2+)(1+ 0K0)],

где 0 - относительная величина, показывающая, какая часть напряжения катодной обмотки вводится в цепь общей обратной связи;

K0 - общий исходный коэффициент усиления каскадов, охваченных общей обратной связью.

Наиболее подходящими лампами для двухтактно-параллельного каскада являются лампы 6ПЗС (аналог 6L6G), так как они дают возможность получить наиболее низкое выходное сопротивление и не требуют очень высокого анодного напряжения. Усилитель с таким оконечным каскадом, собранным на двух лампах 6ПЗС, в режиме АВ отдает в нагрузку мощность до 25 Вт, а на четырех лампах - до 35 Вт.

Для ламп 6ПЗС можно рекомендовать напряжение анод - катод и экранная сетка - катод - 350... 380 В, управляющая сетка - катод - -38... -40 В. Здесь напряжение на экранной сетке превышает указанное в справочниках UС2 max= 300 В, тем не менее на практике лампы 6ПЗС в этом режиме могут работать гораздо дольше гарантийного срока, так как мощность, рассеиваемая при этом на экранной сетке, не превышает допустимую. Смещение в цепи сетки лучше делать фиксированным.

Экранные сетки соединены с анодами ламп противоположного плеча. Таким образом, они получают по отношению к своему катоду постоянное напряжение, равное анодному. По переменному же току присоединение, например, экранной сетки VL1 к аноду VL2 эквивалентно соединению ее с катодом. Резисторы R1, R2, R4, R5, устанавливаемые на ламповых панельках, препятствуют возбуждению каскада на ВЧ.

Для выходного двухтактно-параллельного каскада входное напряжение между управляющими сетками должно быть около 270 В. Переход с предварительного каскада на оконечный (при питании обоих каскадов от общего источника) должен быть трансформаторным, потому что при реостатно-емкостной связи изменение анодного напряжения проявится как изменение смещения и сильно нарушит режим оконечных ламп.

Величину необходимой индуктивности первичной обмотки выходного трансформатора L1 в зависимости от заданных искажений на низшей частоте можно приблизительно определить по формуле (для пентода)

где RH' - пересчитанное в первичную обмотку сопротивление нагрузки в омах, FH - заданная низшая частота в герцах, MH - ослабление сигнала на частоте FH, как отношение коэффициентов усиления на средней и низшей частотах (КCP/КH ), выбирается в пределах 1,05... 1,25 (0,5... 2 дБ).

<Необходимо также делать проверку на величину допустимой магнитной индукции Вмаx . Очень важно низкое омическое сопротивление обмоток, так как если оно окажется больше приведенного сопротивления ламп (для двух ламп 6ПЗС - 90 Oм, для четырех ламп 6ПЗС - 45 Ом), то получится большой проигрыш по выходному сопротивлению./p>

Коэффициент трансформации выбирают таким, чтобы пересчитанное в первичную обмотку сопротивление нагрузки было в 15... 20 раз больше выходного сопротивления ламп. При этом каскад отдает максимальную мощность при малых искажениях. Так, для каскада на двух лампах 6ПЗС (без охвата всего усилителя общей цепью обратной связи) оптимальный коэффициент трансформации

где RH - сопротивление нагрузки, w1 - число витков всей первичной обмотки, w2 - число витков вторичной обмотки.

Для усилителя, охваченного также общей цепью обратной связи,

Междуламповый трансформатор имеет отношение витков первичной и вторичной обмоток 1:1 (обмотки для каждого плеча наматывают в два провода).

Благодаря очень большой глубине ООС двухтактный усилитель с оконечным каскадом по этой схеме при питании накала всех ламп переменным током и при коэффициенте усиления побудь порядка 40 дБ обеспечивает на выходе усилителя уровень помех -75 дБ даже без подбора ламп.

Особенностью двухтактно-параллельного каскада является наличие переменного напряжения НЧ между катодом ламп. Если питание накала ламп обоих плеч осуществляется от общей обмотки, то это напряжение оказывается приложенным между катодом и подогревателем каждой лампы. Практически пиковое напряжение сигнала никогда не превышает максимально допустимое для 6П3С напряжение между катодом и подогревателем, равное 180 В. Однако для многих ламп это напряжение не должно превышать 100 В, и эта проблема решается разделением накальных обмоток трансформатора питания.

Конструкция выходного трансформатора относительно проста. Как обычно принято для двухтактных каскадов, каркас делается из двух секций с перегородкой посередине. Намотка обеих секций производится в одном направлении, но с переворачиванием каркаса после заполнения одной из секций.

Первичные анодная и катодная обмотки наматывают сложенными вместе двумя проводами (их сматывают одновременно с двух катушек), виток к витку. Наиболее подходящей маркой провода является ПЭЛШД, причем для уменьшения индуктивности рассеяния вторичная обмотка размещается между двумя половинами секции первичной обмотки и применяется схема перекрещивания (рис. 3,а). На рис. 3,б показана схема соединений обмоток трансформатора. При отсутствии провода подходящей марки с высоким пробивным напряжением изоляции можно применить провод марки ПЭЛ-1 и обмотку выполнить обычным способом (с раздельными анодными и катодными обмотками).

Двухтактно-параллельный усилитель НЧ Двухтактно-параллельный усилитель НЧ

Экранная обмотка - незамкнутый виток из тонкой медной фольги, соединяемой с общим проводом.

При обычной намотке обмоток трансформаторов индуктивную связь между обмотками целесообразно дополнить емкостной связью. Для этого одноименные концы обмоток соединяют между собой через конденсаторы емкостью 2000...3000 пФ (на напряжение не менее 400 В), последовательно с которыми включают резисторы с небольшим сопротивлением (100...300 Ом).

Качественные показатели УМЗЧ с обычными трансформаторами мало уступают качественным показателям описываемого усилителя, но в области высших частот первый отдает меньшую неискаженную мощность.

Обмотки выходного трансформатора можно также выполнить проводами ПЭЛ-2, ПЭВ-2 и другими аналогичными. При диаметре проводов более 0,15 мм минимальное пробивное напряжение их изоляции составляет не менее 800 В, что вполне достаточно для обеспечения надежной работы трансформатора со спаренными обмотками (намотка в два провода).

Относительно проблемы применения более простой реостатно-емкостной связи между фазоинверсным и выходным каскадами надо заметить, что устранение нестабильности смещения вполне достижимо применением эффективного стабилизатора напряжения.

Рекомендации по охвату общей обратной связью трех и более каскадов в аналогичных усилителях тех лет часто дискредитируют ее эффективность и в нынешнее время. Такую обратную связь целесообразно формировать лишь для двух каскадов усилителя. Впрочем, эти рекомендации были известны и в пятидесятых годах. А вот относительно ламп напомним, что позже появился целый ряд выходных пентодов и лучевых тетродов - 6П14П, 6П36С, 6П42С, 6П45С... Российскими предприятиями также освоено производство новых аналогов зарубежных радиоламп, рекомендуемых для применения в УМЗЧ.

Автор: Б.Минц

Смотрите другие статьи раздела Усилители мощности ламповые.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Аккумулятор сам себя лечит 22.11.2013

Ученые из Стэнфордского университета впервые разработали электрод, который обладает свойством самозаживления. Это может существенно продлить срок эксплуатации литиево-ионных аккумуляторов для электромобилей, смартфонов и других устройств. Секрет кроется в покрытии электрода эластичным полимером, который стягивает микротрещины в материале электрода, возникающие в процессе эксплуатации аккумулятора.

"Самозаживление играет важнейшую роль в выживании и продолжительности жизни животных и растений, - прокомментировал Чао Ван (Chao Wang), научный сотрудник Стэнфордского университета и один из руководителей проекта. - Поэтому мы решили обеспечить этим свойством литиево-ионные батареи, чтобы они могли работать дольше".

Идея покрытия электрода эластичным полимером возникла у Вана после знакомства с командой лаборатории, которая занимается разработкой электронной кожи для роботов. Используемый для этой цели материал он взял за основу, добавив в полимер наночастицы графита для того, чтобы материал проводил электрический ток.

"Мы обнаружили, что срок эксплуатации кремниевых электродов возрос в 10 раз после того, как мы нанесли на них созданный нами полимер", - рассказал Ван, объяснив, что в течение нескольких часов этот полимер полностью устраняет любые микротрещины в толще электрода.

В лабораторных условиях исследователям удалось выполнить 100 циклов перезарядки аккумулятора без снижения его емкости. Целью же является достижение 500 циклов в случае с аккумулятором для смартфона и 3 тыс. циклов - аккумулятора для электромобиля.

Как объяснили ученые, кремниевый электрод они взяли потому, что кремний является наиболее перспективным материалом для изготовления электродов, так как вмещает в себя огромное число ионов. Однако это свойство имеет и обратную сторону - при каждой зарядке электрод увеличивается в размере максимум в 3 раза, вновь уменьшаясь до номинального размера при разрядке батареи. Этот процесс ведет к быстрому разрушению структуры материала и падению свойств элемента питания.

Другие интересные новости:

▪ Игры с квантами энергии

▪ Смартфон Vivo X3 толщиной менее 6 мм

▪ Грибковый экстракт против рака

▪ Супер-слух для человека

▪ Мощный графеновый материал для высокоэффективных суперконденсаторов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Уловитель опилок. Советы домашнему мастеру

▪ статья Где проводились опыты по скрещиванию шимпанзе и человека? Подробный ответ

▪ статья Схемы протравливания нагруженной веревки. Советы туристу

▪ статья Измерительная техника. Справочник

▪ статья Устройство для защиты трехфазных потребителей. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025