Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Справочные материалы

Комментарии к статье Комментарии к статье

Симметричные тиристоры (симисторы) изготовлены на основе пятислойной кремниевой структуры (рис. 1) и предназначены для работы в коммутационной и регулирующей аппаратуре (светорегуляторы для ламп накаливания, коммутаторы нагрузок, аппараты импульсной сварки, регуляторы температуры для бытовых электроприборов, стабилизаторы тока и напряжения, мощные ультразвуковые генераторы и т. п.). Симистор способен проводить ток в обоих направлениях, заменяя таким образом два встречно-параллельно включенных тринистотора. Иными словами, у симистора нет постоянных анода и катода.

Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80
Рис. 1

Для определенности принято выводы симистора, включаемые в цепь нагрузки, обозначать цифрами 1 и 2. Если между выводами 1 и 2 симистора приложено рабочее напряжение, а открывающий импульс на управляющий электрод не подан, то сими стор закрыт и тока не проводит. Включают (открывают) симистор подачей на управляющий электрод импульса тока относительно вывода 2.

В том случае, когда рабочее напряжение приложено плюсом к выводу 2, а минусом - к выводу 1, то симистор можно открыть импульсом любой полярности. Если же на выводе 2 минус, а на выводе 1 плюс рабочего напряжения, симистор может быть открыт только отрицательным управляющим импульсом. Это позволяет упростить регулирующую аппаратуру, работающую на переменном токе. Вместо импульсного открывающего тока на управляющий переход симистора можно подавать постоянный ток соответствующей полярности.

Как и тринистором, симистором энергетически целесообразнее управлять короткими импульсами тока, длительностью в 2...3 раза большей времени включения прибора.

Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80
Рис. 2

На рис. 2 и в табл. 1 показана типовая зависимость мощности цепи управления симистора ТС106-10 от скважности управляющих импульсов.

Таблица 1

Кривая
на рис. 2
Скважность Длительность импульса
управления, мс
Мощность
управления, Вт
1 2 10 0,5
2 20 1 1
3 400 0,05 3,5

Боковые линии, ограничивающие кривые 1-3, определяют допустимый разброс характеристик цепи управления, т. е. определяют зону гарантированного открывания симисторов.

Симистор ТС106-10 оформлен в плоском пластмассовом корпусе с пластинчатыми выводами (рис. 3); масса прибора - не более 2,2 г. Маркировка симистора содержит, кроме типа, цифру, указывающую на его класс по повторяющемуся импульсному напряжению в закрытом состоянии и дату изготовления (месяц и год, например, 06.87). Иногда в маркировку вводят еще и цифру, обозначающую группу по критической скорости увеличения коммутационного напряжения (dU/dtt).

Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80
Рис. 3

Симисторы ТС112-Ю, ТС112-16, ТС122-20, ТС122-25, ТС132-40, ТС132-50, ТС142-63, ТС142-80 оформлены в цилиндрическом металлостеклянном корпусе, снабженном массивным шестигранным фланцем - теплоотводом с резьбовой шпилькой для крепления прибора. Размеры корпусов симисторов указаны на рис. 4 и 5 и в табл. 2.

Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80
рис. 4

Тиристоры симметричные ТС106-10, ТС112-10, ТС112-16, ТС122-20, ТС122-25, ТС13240, ТС132-50, ТС-132-63, ТС142-80
Рис.5

Таблица 2

Симистор Размеры, MM
D Е W Н L d D,
ТС122-20, ТС122-25 015,4 14 Мб 42 12 04.3 011
ТС132-40. ТС132-50 019 17 М8 47 14 04.3 014
ТС142-63. ТС142-80 025 22 М10 58 18 05,3 018,5

Маркировка приборов состоит из букв ТС (тиристор симметричный) и цифр, означающих: первая - порядковый номер модификации, вторая - в кодированном виде размер "под ключ" шестигранника фланца, третья - обозначение конструктивного исполнения корпуса. Далее через дефис следует число, указывающее в амперах максимально допустимый ток в открытом состоянии. Затем через дефис указывают число, означающее класс прибора по повторяющемуся импульсному напряжению в закрытом состоянии, и еще через дефис - группу по критической скорости увеличения коммутационного напряжения. Иногда указывают код климатического исполнения и категории размещения (кроме У2). Рядом с маркировкой размещают дату изготовления прибора (месяц и год) и товарный знак предприятия-изготовителя.

Классов по повторяющемуся импульсному напряжению предусмотрено 12. Класс 1 - 100 В, 2 - 200 В, 12 - 1200 В. Групп по критической скорости увеличения коммутационного напряжения - 7. Группа 1 - 2,5 В/мкс, 2 - 4 В/мкс, 3 - 6,3 В/мкс, 4-10 В/мкс, 5-16 В/мкс, 6-25 В/мкс и 7 - 50 В/мкс. Симисторы серий ТС122, ТС132 и ТС142 выпускают в двух вариантах, отличающихся только конструкцией выводов 1 и уэ (управляющий электрод).

Основные технические характеристики симисторов серий ТС112, ТС122, ТС132, ТС142 указаны в табл. 3.

Таблица 3

Параметр ТС112-10 ТС112-16 ТС122-20 ТС122.25 ТС 132-40 ТС132.50 ТС142-63 ТС142-80
Максимально допустимый ток (действующее значение) открытого симистора, А 10 16 20 25 40 50 63 80
Повторяющийся импульсный ток(2) закрытого симистора, мА, не более 3 3 3,5 3,5 5 5 7 7
Импульсное напряжение(3) на открытом симисторе. В, не более 1,85 1,85 1,85 1,8 1„85 1.8 1,8 1.8
Открывающее постоянное напряжение управления. В, не более, при температуре
+25±10°С 3 3 3,5 3,5 4 4 4,5 4,5
-50°С 5 5 6 6 7 7 7,5 7.5
Открывающий постоянный ток управления. А, не более, при температуре
+25±10°С 0,1 0,1 0,15 0,15 0,2 0,2 0,2 0,2
-50°С 0,3 0,3 0,45 0.45 0,48 0,48 0,48 0,48
Ток удержания, мА, не более 45 45 45 45 60 60 60 60
Критическая скорость увеличения коммутационного напряжения(2) (dU/dt) ком. По группам 1-6 По группам 1-7
Критическая скорость увеличения тока открытого симистора, А/мкс 50 50 50 50 63 63 63 63
Тепловое сопротивление структура-корпус, °С/Вт, не более 2,5 1,55 1,3 0,9 0,65 0.52 0,44 0,34
Масса, г, не более 6 6 11 11 23 23 50 50

1) При температуре корпуса 85°С.
2) При температуре структуры 125°С.
3) В нормальных климатических условиях (Токр.ср=25°С).
4) Неоткрывающее напряжение на управляющем переходе - не менее 0,25 В. Рабочий интервал температуры структуры - 60...+125°С. Симисторы работоспособны на переменном токе частотой до 500 Гц.

Основные технические характеристики ТС106-10
Повторяющееся импульсное напряжение на закрытом симисторе, В
класс 1 100
класс 2 200
класс 3 300
Максимально допустимый ток (действующее значение) открытого симистора при Тр=80°С, А, не менее 10
Повторяющийся импульсный ток закрытого симистора, мА, не более . 1,5
Импульсное напряжение на открытом симисторе, В, не более 1 65
Открывающее постоянное напряжение управления, В, не более
при минимальной температуре корпуса 6
при Т=25°С 3,5
Открывающий постоянный ток управления, мА, не более
при минимальной температуре корпуса 230
при Т=25 °С . . . 100
Неоткрывающее постоянное напряжение управления при максимальной температуре корпуса. В  
не менее 0,2
Ток удержания в открытом состоянии, мА, не более 45
Максимально допустимая мощность управления, Вт 0,5
Максимально допустимый постоянный ток управляющего перехода, мА 400
Критическая скорость увеличения коммутационного напряжения, В/мкс, не менее
группа 1 2,5
группа 2 4
группа 3 6,3
группа 4 10
Тепловое сопротивление структура - корпус, °С/Вт, не более 2,2
Рабочий интервал температуры корпуса, °С -50... +110

Симисторы устойчивы к воздействию многократной смены температуры окружающей среды от -50 °С до максимально допустимого значения для структуры, а также к воздействию влажного тепла при температуре -(-35 °С и влажности до 98 %.

Приборы могут работать в условиях воздействия механических нагрузок по группе М27 ГОСТ 17516-72 и одиночных ударов с длительностью импульса 50 мс и ускорением 4д.

Вероятность безотказной работы за время 1000 ч - не менее 0,994.

Автор: А. Анисимов, г. Запорожье; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Справочные материалы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Зарядное устройство смартфона преобразует бытовой шум в электричество 23.08.2014

Исследователи из фирмы Nokia и Лондонского университета королевы Марии создали действующую систему зарядки мобильных телефонов, использующую звуковые волны. Об этом сообщил ресурс Gizmag.

Сама идея такой системы была предложена в 2010 г. корейскими учеными. Она должна была действовать с использованием пьезоэлектрического эффекта: нанопровода на основе оксида цинка должны преобразовывать в электричество вызванные звуком вибрации. Но только сейчас европейским инженерам удалось достичь силы тока такого уровня, который оказался вполне достаточным для зарядки мобильных устройств.

Как и коллеги из Кореи, ученые из Nokia и Лондонского университета использовали лист с наностержнями из оксида цинка: они вырабатывают электрический ток, сгибаясь под действием механической нагрузки (например, звуковых волн).

Исследователи распылили на поверхности листа пластмассы жидкий оксид цинка. Затем лист пластмассы поместили в смесь химических веществ и подвергли нагреву до 90°С. В результате оксид цинка преобразовался в "лес" из наностержней. Затем лист поместили между двух золотых электроконтактных панелей из золота (с целью снижения расходов, разработчики предлагают делать их из обыкновенной алюминиевой фольги).

Получившийся опытный образец устройства равен по площади некоторым смартфонам и может на одних лишь повседневных шумах (музыка, голоса, гул машин) генерировать электрический ток напряжением до 5 В. Для сравнения, корейским исследователям в своих экспериментах удалось добиться напряжения лишь в 50 мВ. О силе тока в цепи источник не сообщает, но упоминается, что получаемой энергии вполне достаточно, чтобы заражать мобильный телефон.

"Возможность отказаться от использования аккумуляторных батарей в мобильных телефонах, воспользовавшись рассеянной повсюду энергии, - это просто потрясающая идея. Мы надеемся, что сможем приблизить ее реализацию на практике", - заявил доктор Джо Бриско (Joe Briscoe), ведущий автор проекта.

Другие интересные новости:

▪ Сверхвысокое давление новым способом

▪ Компьютер для установки в сердце

▪ Изменение скорости движения отдельных объектов на видео

▪ Эффективные вертикальные солнечные системы для парковок

▪ Автошкола для крыс

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Травматология и ортопедия. Конспект лекций

▪ статья Что такое воздух? Подробный ответ

▪ статья Работа на волоконно-оптических кабелях связи. Типовая инструкция по охране труда

▪ статья Сигнализатор повышенной влажности воздуха. Энциклопедия радиоэлектроники и электротехники

▪ статья Простой детектор радиоволн. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025