Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Трансивер Донбасс-1М. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

По эфирным оценкам ламповые трансиверы продолжают пользоваться популярностью у радиолюбителей из СНГ. Предлагаемый аппарат был разработан для работы на низкочастотных диапазонах (160 - 30 м). Описываемый ниже вариант предназначен для работы SSB я CW на диапазоне 160 м.

Трансивер построен по схеме с одним преобразованием частоты (ПЧ 500 - кГц). Чувствительность приемного тракта не хуже 5 мкВ. Динамический диапазон по интермодуляции третьего порядка не менее 80 дБ. Избирательность при расстройке на ±10 кГц " 80 дБ. Выходная мощность передатчика при сопротивлении нагрузки 75 Ом -10 Вт (при напряжении питания выходного каскада 250 В).

Принципиальная схема трансивера приведена на рис.1 и рис.2

В режиме приеме сигнал с антенны через аттенюатор, выполненный на резисторе R35, и полосовой фильтр L9C34C35C36L10 поступает на на левый по схеме триод лампы VL5. С него он подается на широкополосный кольцевой диодный смеситель, собранный на трансформаторах Т2, Т3 и диодах VD3 - VD6. Сюда же поступает и напряжение с генератора плавного диапазона.

ГПД собран на лампе VL6 по схеме индуктивной трехточки. Переменным конденсатором С47 трансивер перестраивают по диапазону. Резистором R45 можно расстроить приемник в пределах +/-5 кГц относительно частоты передачи. Подстроечным резистором R46 устанавливают нуль расстройки.

Преобразованный сигнал поступает на вход первого каскада усилителя ПЧ, собранного на левом по схеме триоде лампы VL7, включенном по схеме с общей сеткой, и далее через электромеханический фильтр Z1 (в режиме SSB) или Z2 (CW) - на управляющую сетку пентода VL3, на котором выполнен второй каскад УПЧ. В его анодную цепь включен контур L6C21 детектора-модулятора перемножительного типа на полевом транзисторе VT1. Фильтр Z3 выделяет низкочастотный сигнал, который усиливается двухкаскадным усилителем НЧ, собранным на лампе VL4. В приемном тракте усиление регулируют по ПЧ переменным резистором R15.

При передаче в режиме SSB сигнал с микрофона поступает на усилитель НЧ передатчика (на Правом по схеме триоде лампы VL9), а затем через катодный повторитель на Правом триоде VL9 и фильтр нижних частот Z3 - на детектор-модулятор (VT1, L6, L7). Усилитель DSB выполнен на триоде VL7. SSB сигнал с выхода ЭМФ Z1 через катодный повторитель на правом триоде VL5 приходит на широкополосный кольцевой диодный смеситель (на элементах T1, T2, VD3 - VD6). Со смесителя сигнал поступает на вход первого усилителя передатчика (правый триод VL5), выполненного по схеме с общей сеткой. Сигнал рабочей частоты, выделенный контуром L11C42, усиливается вначале предоконечным каскадом (на пентоде VL2), а затем выходным (на лампе VL1), к которому подключен П-контур C1C2L1C3C4C5. Резистром R13 регулируют выходную мощность передатчика.

В режиме CW переключателем S1 снимают анодное напряжение с обоих половин лампы в усилителе НЧ передатчика и подают его на управляемый телеграфным ключом усилитель с общей сеткой на левом триоде VL8. В его катодную цепь поступает напряжение частотой 500 кГц с кварцевого гетеродина (собран на правом триоде VL8). С выхода управляемого усилителя сигнал через конденсатор С68 и контакты реле К2 подается на сетку правого триода VL7, включенного по схеме катодного повторителя. Дальнейшее прохождение CW сигнала совпадает с прохождением SSB сигнала.

Для перехода с приема на передачу на управляющие сетки неработающих ламп через контакты реле К4 подают напряжение -70 В (-70 В RX в режиме приема, -70 В ТХ в режиме передачи).

Трансивер не содержит особо дефицитных деталей. Контурные катушки выполнены на каркасах диаметром 7,5 мм (от старых телевизоров) и содержат по 32 витка провода ПЭВ-2 0,24. Катушка L8 имеет 4 витка. Катушка в ГПД намотана на текстолитовом каркасе диаметром 20 мм (20 витков) проводом ПЭВ-2 0,7. Отвод сделан от 5-го витка, считая от вывода соединенного с корпусом. Катушка L1 выполнена на текстолитовом каркасе диаметром 40 мм и содержит 50 витков провода ПЭВ-2 1,0. Дроссель L2 содержит 10 витков провода ПЭВ-2 1,0, намотанного на резисторе R13, L3, L4 - Д-0,1.

Широкополосные трансформаторы Т2, Т3 выполнены на кольцевых (с наружным диаметром 12 мм) магнитопроводах из феррита с начальной магнитной проницаемостью 1000...2000. Намотку производят тремя слабо скрученными проводами ПЭЛШО 0,33. Число витков - 12.

Фильтр нижних частот Z3 - Д-3,4. Его можно заменить на любой другой (в том числе и самодельный) ФНЧ с частотой среза около 3 кГц. В крайнем случае его (а также резистор R27 и конденсатор С27) можно исключить.

В случае необходимости детектор-модулятор на полевом транзисторе VT1, обеспечивающий подавление несущей на 30...40 дБ, можно заменить на "классический" кольцевой балансный модулятор-детектор на диодах.

Реле К1, К4 - РЭС-9 (паспорт РС4.524.200), К2, К3, К5 - К8 - РЭС-10 (РС4.524.302). В выходном каскаде использованы КПЕ от старых ламповых приемников. Конденсатор С3 изолирован от шасси. В ГПД применена одна секция КПЕ от радиоприемника "ВЭФ".

Блок питания трансивера должен обеспечивать напряжения +300 В (300 мА), +100 В (стабилизированное, 50 мА), -70 В (50 мА), +24 В (500 мА), переменные 6,3 В (3 А) и 12,6 В (1 А).

Эскизы шасси и передней панели приведены на рис.3 и рис.4.

Трансивер начинают настраивать с ГПД путем "укладки" частоты в пределах 2330...2430 кГц, подбирая конденсаторы С48, С52. Частоту перекрытия контролируют частотомером. Для этого размыкают цепь между резистором R52 и конденсатором С56 и к последнему подключают щуп частотомера. Частоту ГПД можно также проконтролировать приёмником, имеющим соответствующий диапазон. Эффективное значение ВЧ напряжения на конденсаторе С56 должно быть не менее 1,5...2,5 В. Затем проверяют работу кварцевого гетеродина. ВЧ напряжение на конденсаторе С77 должно быть в пределах 1...2:В.

Убедившись традиционными методами в работоспособности усилителя ЗЧ, Переходят к налаживанию усилителя промежуточной частоты. Конденсатор С59 отключают от трансформатора Т3 и через него на катод лампы VL7 с

генератора стандартных сигналов подают напряжение частотой 500 кГц. Подстроечником катушки L6 и подбором конденсаторов С66, С70 и С67, С71 добиваются максимальной громкости. Затем восстанавливают соединение конденсатора С59 с трансформатором Т3 и приступают к окончательной настройке приемного тракта. Конденсатором С47 устанавливают частоту ГПД, соответствующую середине рабочего диапазона, на антенный вход трансивера подают сигнал с ГСС и подстраивают катушки L9, L10 полосового фильтра по максимальной громкости.

Налаживание передатчика начинают с проверки работы его усилителя НЧ. Для этого между контактами реле К3 временно впаивают конденсатор емкостью около 0,1 мкФ, подключают микрофон и на слух оценивают качество сигнала. Затем, нагрузив трансивер на эквивалент антенны, тумблером S3 переводят Трансивер в режим передачи и резистором R5 устанавливают ток покоя лампы VL1 равным 30 мА. После этого отключают конденсатор С45 от трансформатора Т2 и подают на него колебания амплитудой около 0,2 В и частотой соответствующей середине диапазона. Подстройкой катушек L11 и L5 добиваются максимума тока ("раскачки") выходного каскада (около 120 мА). В случае самовозбуждения каскада параллельно катушкам L11 и L5 следует включить резисторы сопротивлением в пределах 1...10 кОм (подбирают экспериментально). Восстановив разомкнутую цепь, в режиме SSB произнося перед микрофоном громкое "а-а-а", проверяют уровень "раскачки" выходного каскада.

Затем переводят трансивер в режим CW и замыкают тумблер S2. Подбирая конденсатор С68, добиваются такой же "раскачки" выходного каскада, как и в режиме SSB. П-контур настраивают обычным способом (либо с помощью рефлектометра, либо по спаду тока лампы выходного каскада (примерно на 20% в момент резонанса).

Автор: Владимир Гордиенко (UT1IA ex RB5IM), г. Донецк, Украина; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Цунами на Марсе 23.05.2016

Ученые нашли в ландшафте северных равнин (бассейн Аргир) Марса следы цунами, вызванных метеоритами. Первый метеорит ударил 3,4 млрд лет назад. Вызванное им мега-ценами пробило на дне каналы, по которым вода возвращалась в океан, утверждает международный коллектив ученых.

Ученые нашли доказательства двух ударов метеоритов на Марсе, которые вызвали цунами. Два метеорных события разделяли миллионы лет, в течение которых планета испытывала похолодание климата, в результате чего вода превратилась в лед. "Уровень океана отступил от его изначальной береговой линии и образовал вторую береговую линию, потому что климат стал значительно холоднее", - говорят ученые.

Вторая волна цунами образовала округлые массивы льда на месте океана, который никогда уже не вернулся к прежним границам. Эти округлые массивы льда по сей день сохранили очертания. Ученые нашли доказательства, что в ранней истории Марса существовали очень холодные океаны, причем соленые. Холодная соленая вода была жидкой, а поэтому могла служить убежищем для живых организмов. Авторы работы полагают, что эти следы цунами - наиболее вероятные кандидаты на поиски следов жизни на Красной планете.

В дальнейшем ученые планируют изучить эти территории и оценить потенциал для будущих экспедиций на Марс.

Другие интересные новости:

▪ Фантазеры оказались альтруистами

▪ Солнечные батареи из лунного грунта

▪ Каждое процессорное ядро получит маршрутизатор

▪ Водородный автомобиль Toyota Mirai

▪ Подвижный образ жизни повышает успеваемость в школе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детская научная лаборатория. Подборка статей

▪ статья Друг Аркадий, не говори красиво. Крылатое выражение

▪ статья Кто изобрел лифт? Подробный ответ

▪ статья Работа на дроворазделочном узле. Типовая инструкция по охране труда

▪ статья Комбинированный частотомер. Энциклопедия радиоэлектроники и электротехники

▪ статья Ясновидящий гусь. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025