Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Методы питания и исполнение магнитных рамочных антенн. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Антенны. Измерения, настройка и согласование

Комментарии к статье Комментарии к статье

СВЯЗЬ КОАКСИАЛЬНОГО КАБЕЛЯ С ПЕРЕДАЮЩИМИ МАГНИТНЫМИ РАМОЧНЫМИ АНТЕННАМИ

При работе таких антенн в режиме передачи применяют два вида связи антенны с фидерной линией - через магнитную петлю (рис. 3.11,а) и через схему гамма-согласования (рис. 3.11,б). Обратите внимание, что и петля связи, и точка подключения экрана кабеля при гамма-согласовании находятся точно напротив подстроечного конденсатора Это необходимо для сохранения симметрии рамки.

Методы питания и исполнение магнитных рамочных антенн
Рис. 3.11. Питание передающей магнитной рамки

Обычно диаметр петли связи составляет 0,2 от диаметра основной рамки. С помощью этой петли можно обеспечить удовлетворительное согласование во всем рабочем диапазоне частот магнитной рамки. Надо стараться, чтобы провод для петли не был тоньше того, из которого сделана магнитная рамка.

Второй вид согласования - гамма-согласование. Толщина провода, используемого в его схеме, примерно в 2-5 раз тоньше провода рамки. Его радиус составляет 0,85-0,95 от радиуса основной рамки. Длина L в схеме не должна превышать 0,2 от периметра рамки и чаще всего выбирают значение 0,1. Гамма-согласование требует более тщательной, по сравнению с петлей связи, настройки для разных диапазонов, но при этом обладает более высоким КПД. При работе рамки в двух-трех диапазонах для гамма-согласования всегда можно найти оптимальные размеры. Если к рамке имеется свободный доступ, то для настройки удобно использовать замыкающие перемычки. В любом случае, когда приходится иметь дело с магнитными рамками, рекомендуется устанавливать согласующее устройство.

Если рамка служит только в качестве приемной, то проблем с согласованием обычно не бывает. Оно осуществляется с помощью размещаемого непосредственно около рамки транзисторного усилителя, с выхода которого отфильтрованный и усиленный ВЧ сигнал по коаксиальному кабелю поступает на вход приемника.

РАЗМЕРЫ И ИСПОЛНЕНИЕ МАГНИТНЫХ РАМОЧНЫХ АНТЕНН

Характерные размеры передающей рамочной антенны приведены в табл. 3.2.

Таблица 3.2.
Периметр рамки, см 50 80 100 200 500 400
Высшая рабочая частота, МГц 29 21 14 7 3,5 1,9

При таких размерах рамка эффективно работает на трех соседних диапазонах длин волн, например 10, 15 и 20 или 40, 80 и 160 м. Ее эффективность на верхней частоте максимальна, а на более низких снижается. Приведенные в этой таблице данные соответствуют магнитной рамке без экрана. Если имеется электростатический экран, то следует учитывать емкость между ним и внутренним проводом, которая уменьшает резонансную частоту рамки. Для удовлетворительной работы периметр рамки должен быть не менее 0,08 от рабочей длины волны.

С помощью конденсатора рамку можно настроить на еще более низкие частоты, однако в режиме передачи подобная конструкция станет уже совсем мало эффективной.

Как было показано выше, входное сопротивление магнитных рамок невелико. Это затрудняет согласование антенных систем, в которых магнитная рамка работает на передачу, без ее настройки в резонанс с рабочей частотой.

Рамочная антенна имеет свою собственную индуктивность. Ее можно рассчитать по известной формуле или измерить с помощью соответствующих приборов. Присоединив к разомкнутым концам рамки переменный конденсатор, получим обычный колебательный контур, который можно настраивать в широком диапазоне частот. На рис. 3.11 показаны две схемы связи рамки с кабелем: через петлю связи (а) и с применением гамма-согласования (б); под ними изображены соответствующие аналоги на сосредоточенных элементах в виде индуктивной и трансформаторной связи с контуром.

В колебательном контуре, образованном рамкой и конденсатором, электрическое поле сосредоточено внутри конденсатора, а магнитное - вокруг рамки. Результаты решения задачи нахождения оптимальных размеров рамки и емкости конденсатора были приведены выше. Из них следует, что длина рамки должна составлять приблизительно 0,08 от длины волны, а емкость конденсатора - около 30-50 пФ в диапазоне 2-30 МГц.

Рамка меньшей длины будет излучать менее эффективно из-за низкой добротности. Последняя, как известно, определяется выражением: Q=(L/C)/Rп, где L - индуктивность рамки, Гн; C - емкость на конце рамки, Ф; Rп - сопротивление потерь в рамке, Ом.

Одновитковая рамка, в отличие от многовитковых, имеет максимальное отношение L/C и минимальное сопротивление потерь. Рамку, длина которой больше, чем 0,08 рабочей длины волны, возможно не удастся настроить в резонанс, вследствие чего ее согласование станет проблематичным.

Поэтому, для работы в режиме передачи целесообразно применять одновитковую рамку. При настройке ее в резонанс, когда от передатчика поступает значительная мощность и рамка хорошо согласована, по ней могут протекать ВЧ токи в сотни ампер. Поэтому желательно, чтобы передающая магнитная рамочная антенна была выполнена из медной трубы большого диаметра. Можно отполировать ее поверхность до зеркального блеска. Конденсатор переменной емкости обязательно должен быть высококачественным, лучше - без трущихся контактов. В крайнем случае, можно обойтись обычным спаренным конденсатором переменной емкости, подключенным к рамке только статорными (неподвижными) секциями (рис. 3.12). Не следует применять конденсаторы с твердым диэлектриком из-за их низкой добротности.

Методы питания и исполнение магнитных рамочных антенн
Рис. 3.12. Обычный конденсатор переменной емкости в магнитной рамке

Заметим, что иногда встречаются сообщения об использовании радиолюбителями для работы в режиме передачи ненастраиваемых магнитных рамочных антенн.

Задача эффективного согласования такой рамки с передатчиком даже теоретически очень сложна и выходит за рамки обычной радиолюбительской практики, поэтому этот тип антенн здесь не рассматривается. Не рекомендуем радиолюбителям, не имеющим соответствующей теоретической и практической подготовки, пользоваться такими конструкциями, так как результат будет неутешительным.

Когда магнитные рамки служат в качестве приемных антенн, проблема КПД стоит не так остро. Поэтому для них подходят конденсаторе с твердым диэлектриком или воздушные с трущимися контактами. Рамку делают многовитковой, что позволяет уменьшить ее размеры. Для рамки можно использовать и тонкий провод. Часто применяют коаксиальный кабель, внутренняя жила которого образует рамку, а оплетка выполняет функции ее экрана. Источник: Григоров И.Н. Практические конструкции антенн.

СОГЛАСОВАНИЕ РАМКИ И ПИТАЮЩЕГО КАБЕЛЯ

Индуктивная связь и согласование также широко распространены благодаря простоте реализации. Чаще всего применяется вариант, показанный на рис. 20.7. Внутри большой петли размещают малую индуктивную петлю с соотношением диаметров 5:1. Благодаря симметричной связи через симметрирующий трансформатор на кольцевом сердечнике 1:1 можно подсоединять 50-омный коаксиальный кабель.

Методы питания и исполнение магнитных рамочных антенн
Рис. 20.7. Рамочные антенны с индуктивной связью: а - симметричное подключение с симметрирующим трансформатором на кольцевом сердечнике 1:1; б - несимметричная связь; в - индуктивная связь с экранированием (детальный эскиз).

При несимметричной связи (рис. 20.7б) коаксиальный кабель подключается непосредственно. Электрически целесообразный способ индуктивной связи представлен на рис. 20.7,в. Здесь показан только связующий виток из коаксиального кабеля с разрывом его экрана посреди витка. Экран части правой половины шлейфа припаивается к основанию большого кольца (см. рисунок), и в этом месте антенну заземляют. Слегка деформируя шлейф из коаксиального кабеля, добиваются тонкой настройки антенны на минимальный КСВ. Считается, что диаметр d должен быть тем меньше, чем выше рабочая добротность антенны.

Литература:

  1. К.Ротхаммель. Антенны. Том 2. Издание 11, 2001г.

Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Антенны. Измерения, настройка и согласование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Шимпанзе могут менять свои убеждения 10.11.2025

Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим. Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации. Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми. Для экспериментов использовались шимпанзе из ...>>

Полет на Марс: испытание для тела и выживания человечества 10.11.2025

Исследование космоса и перспективы полета на Марс привлекают внимание ученых и инженеров по всему миру. Но за технологическими достижениями скрывается серьезная угроза для здоровья астронавтов. Как отмечает Interesting Engineering, даже самые современные ракеты и системы жизнеобеспечения не способны полностью защитить человека от физических и генетических изменений, возникающих во время длительных космических миссий. Эти риски включают потерю костной массы, ослабление мышц и даже потенциальные повреждения ДНК. Путешествие на Марс длится от шести до девяти месяцев. В условиях невесомости организм, привыкший к земной гравитации, претерпевает значительные изменения. Мышцы атрофируются, кости теряют до 1% плотности в месяц, сердце уменьшается в размерах, а позвоночник удлиняется, вызывая боль и дискомфорт. После возвращения на Землю астронавты сталкиваются с головокружением и проблемами при вставании из-за адаптации к гравитации. Особую опасность представляет перераспределение жидкос ...>>

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Случайная новость из Архива

Аромат античных статуй 22.03.2025

Исследования, проведенные учеными из Копенгагенского художественного музея, раскрыли удивительное и неожиданное открытие: древнегреческие и римские скульптуры не только раскрашивали, но и ароматизировали. Это открытие меняет наши представления о восприятии искусства в античные времена, добавляя новое измерение в восприятие античных статуй.

Ученые основывают свои выводы на изучении древних текстов, включая произведения римского философа Цицерона, а также надписей, найденных в храмах Греции. Согласно этим источникам, статуи богов и богинь не воспринимались лишь как произведения искусства, они должны были напоминать живых существ, что подтверждается практикой использования ароматических масел и благовоний. Например, Цицерон упоминает, что в сицилийском городе Сегеста статую богини Артемиды натирали ароматическими маслами и благовониями. Также на острове Делос, по надписям на храмах, смазывали статуи духами с запахом роз, что подтверждает распространенность этой практики.

Автор исследования, Сесиль Бронс, объясняет: "Белая мраморная статуя не должна восприниматься как обычный каменный объект. Она должна была напоминать истинного бога или богиню". Это означает, что древнегреческие и римские мастера стремились создать многосенсорный опыт для зрителей, а не ограничиваться только визуальным восприятием.

Ранее ученые уже установили, что античные статуи были ярко раскрашены, однако краска со временем исчезла, и в современности мы видим их как белые. Новые исследования открывают еще один важный аспект: древние мастера не только раскрашивали статуи, но и наполняли их ароматами, что помогало создать более реалистичное впечатление и сильнее воздействовать на зрителя.

Это открытие не только помогает глубже понять культуру и эстетику Древнего мира, но и показывает, как древние греки и римляне использовали аромат для усиления сакрального и ритуального воздействия. Статуи становились не просто произведениями искусства, но и частью религиозных обрядов, олицетворяя божественное в их многообразии.

Таким образом, древнегреческие и римские изваяния были не только визуальными символами, но и активными участниками многосенсорных ритуалов, которые воздействовали не только на зрение, но и на обоняние, создавая более глубокое и реальное восприятие для их современников.

Другие интересные новости:

▪ Три типа людей

▪ Sony PlayStation Move

▪ Планктон Черного моря избавляет Землю от углерода

▪ DVD-записывающие устройства вытеснят видеомагнитофоны

▪ Ген вечного детства

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Филип Котлер. Знаменитые афоризмы

▪ статья Почему павлин распускает перья? Подробный ответ

▪ статья Эксплуатация страховочных канатов. Типовая инструкция по охране труда

▪ статья УКВ трансвертер на 144 МГц. Энциклопедия радиоэлектроники и электротехники

▪ статья Источник питания для измерительного прибора на микросхемах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025