Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Миниатюрная ЧМ радиостанция диапазона 2 метра. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Предлагаемая в этой статье радиостанция имеет малые вес и габариты. Она удобна в эксплуатации, поскольку имеет минимум органов управления. Радиостанция выполнена на SMD-компонентах, легко повторяема, недорога в изготовлении и проста в сборке, имеет хорошие параметры по приему и передаче.

Для упрощения конструкции индикатора частоты в станции нет, а используется режим беспоисковой работы (три заранее записанные в память радиостанции рабочие частоты). При этом имеется режим сканирования по всему разрешенному ЧМ участку, позволяющий найти корреспондента, зафиксироваться на его частоте и проводить связи.

Миниатюрная ЧМ радиостанция диапазона 2 метра

В целом устройство представляет собой полноценную радиостанцию, во многом не уступающую промышленным аппаратам. Она имеет следующие технические характеристики:

  • Чувствительность приемного тракта, мкВ......не хуже 0,1
  • Выходная мощность, Вт: при полном заряде аккумуляторов......2,5
  • при пониженном напряжении питания......1,8
  • Динамический диапазон по "забитию", дБ......не хуже 80
  • Запрограммированных частот......3
  • Напряжение питания, В......4,8
  • Потребляемый ток, мА: при передаче......750
  • в режиме приема......26
  • в режиме экономичного приема ....3,6
  • Режим сканирования обеспечивается в полосе частот 144,5...145,8 МГц с шагом 25 кГц.

Схема радиостанции показана на рис. 2. Приемный тракт выполнен по схеме с двойным преобразованием частоты и состоит из УРЧ VT1, первого смесителя на транзисторе VT2, промежуточного усилительного каскада VT3, функциональной микросхемы DA1 (МC3361 фирмы Motorola) и УНЧ на микросхеме DA2.

Миниатюрная ЧМ радиостанция диапазона 2 метра
(нажмите для увеличения)

В режиме приема сигнал с антенны через разъем XW1, катушку L7, конденсатор С1 поступает на входной контур L1C2, а затем на первый затвор VT1. Далее усиленный сигнал выделяется колебательным контуром L2C6 и подается на первый затвор транзистора первого смесителя VT2. На второй затвор через конденсатор С8 подается сигнал 1-го гетеродина, снимаемый с генератора управляемого напряжением (ГУН) на \/Т10, который является общим для приемника и передатчика. Управление ГУН осуществляет синтезатор, выполненный на микросхемах DD1 и DA1. Смеситель на VT2 работает с нулевым начальным смещением на затворах. Это позволило получить малые шумы смесителя, хорошую линейность и высокий коэффициент преобразования. Сигнал первой ПЧ с частотой 10695 кГц выделяется на резисторе R6 и через кварцевый фильтр ZQ2 поступает на усилительный каскад на транзисторе VT3. Усиленный сигнал подается на вход второго смесителя (вывод 16 микросхемы DA1). На другой вход этого смесителя (вывод 1) через емкостный делитель С10C30 подается сигнал с кварцевого генератора драйвера синтезатора с частотой 10240 кГц. В результате смешивания двух сигналов вырабатывается разностный сигнал второй ПЧ 455 кГц. Далее он через керамический ФСС ZQ3 поступает на УПЧ и детектор, входящие в состав микросхемы DA1.

Включение микросхемы типовое, за исключением того, что немного оптимизированы номиналы фильтра усилителя шумов с целью более четкой его работы и защиты от ложных срабатываний шумоподавителя при больших девиациях принимаемого сигнала. Сигнал НЧ снимается с фильтра R19C18 и через регулятор громкости R21 подается на УНЧ DA2. При отсутствии принимаемого сигнала УНЧ закрыт сигналом высокого логического уровня, подаваемого с вывода 19 процессора DD1 на вывод 1 DA2 (управление). При наличии сигнала радиостанции на выходе триггера в составе DA1 появляется положительное напряжение, которое через R10 открывает ключ VT4, тем самым на выводе 1 DA2 устанавливается низкий логический уровень, приводящий УНЧ в рабочий режим. Параллельно VT4 установлена кнопка принудительного отключения ШП SB2. Порог срабатывания ШП устанавливают резистором R16.

В целом алгоритм работы такой: при включении питания выключателем SA2 процессор DD1 устанавливается в рабочий режим. На выводе 13 микросхемы присутствует логический 0, который через резистор R41 открывает ключ VT9 в цепи питания приемника. Питание с этого ключа через цепь R42VD7 поступает на ГУН. Если при зтом нет работающей станции (шумоподавитель закрыт), то через 4 с процессор переходит в экономичный режим и включает питание "порциями" по 0,3 с через каждые 0,9 с. Подача питания индицируется мигающим зеленым светодиодом VD4.1. Если есть станция и шумоподавитель сработал, то ключом VT4 устанавливается логический 0 на выводе 19 процессора и он переходит в рабочий режим. Так же включается и УНЧ. Процессор будет находится в рабочем состоянии, пока есть активность прием-передача или работающие станции, т. е. открывание шумоподавителя. Через 4 с отсутствия принимаемого сигнала и передачи процессор снова переводит станцию в экономичный режим.

Для включения режима сканирования следует в выключенном состоянии радиостанции нажать кнопку передачи SB1 и включить питание. Через 1 с после подачи питания отпустить SB1. Сканирование индицирует частое мигание светодиода VD4. При обнаружении работающей станции сканирование приостанавливается на 3 с, затем продолжается дальше. Остановить сканирование нужно кратковременным нажатием на передачу. Станция будет находиться на зафиксированной частоте до выключения питания.

После повторного включения питания в соответствии с положением переключателя SA1 устанавливается записанная при изготовлении радиостанции в память частота.

Передача включается нажатием кнопки SB1. При этом переключается режим процессора по выводу 16 DD1, также через R36 открывается ключ VT8 и блокирует подачу питания на приемник. Управлением через R37 открывается ключ VT7, подающий питание на предварительные каскады передатчика и микрофонный усилитель. Свечение красного светодиода VD4.2 индицирует режим передачи.

Микрофонный усилитель собран по схеме с непосредственной связью между каскадами на транзисторах VT14 и VT15. В усилителе осуществляются частотная коррекция с подъемом АЧХ около 6 дБ на октаву до частоты 3 кГц и дальнейший завал АЧХ. Усилитель имеет относительно низкоомный выход и усиливает НЧ сигнал до амплитуды 1,5 В, равной напряжению его питания. Это позволило использовать простой диодный ограничитель и обеспечить небольшую степень компрессии, не вызывающую заметных искажений. Усилитель не чувствителен к воздействию мощных ВЧ полей и обеспечивает хорошее звучание на передачу.

Частотная модуляция осуществляется подачей НЧ сигнала через R65 на варикап VD8, который осуществляет перестройку ГУН управлением от синтезатора и служит для коммутации его собственной частоты при переходе с приема на передачу. В режиме приема через цепь R43C40R44 на варикап подается положительное напряжение смещения.

ГУН выполнен на полевом транзисторе VT10 по схеме емкостной трехточки. Применение в генераторе полевого транзистора позволило получить хорошую собственную стабильность и чистый спектр колебаний. Генератор также хорошо согласовывается с последующим каскадом и в нагруженном состоянии развивает амплитуду в режиме передачи около 0,8 В, что в целом позволило упростить передатчик.

Усилительная часть передатчика содержит три каскада на транзисторах VT11, VT12, VT13 соответственно. Каскады на транзисторах VT12 и VT13 в исходном состоянии заперты, поэтому питание на них не коммутируется и подано постоянно. VT12 работает в режиме класса В с небольшим смещением, снимаемым с диода VD9, a VT13 - в режиме класса С без смещения и имеет высокий КПД. Усиленный сигнал через согласующие цепи и разъем XW1 подается в антенну.

Все цепи радиостанции, за исключением УНЧ и выходного каскада передатчика, питаются от стабилизатора DA3 с напряжением стабилизации 3,3 В. В результате сохраняются все параметры радиостанции вплоть до разряда. Для контроля разряда служат пороговое устройство на транзисторах VT5 и VT6 и светодиод VD5.

Станция собрана на одной печатной плате из двусторонне фольгированного стеклотекстолита размерами 87x53 мм, выполненной по современной технологии, с металлизацией отверстий и защитной маской размером по внутреннему периметру корпуса, что придает ей дополнительную прочность. Трассировка сторон платы показана на рис. 3 и 4. Специальных креплений плата не имеет, просто вставляется в корпус и прижимается задней крышкой, которая крепится двумя винтами. Предварительно подпаивают только динамик и провод от антенного разъема.

Миниатюрная ЧМ радиостанция диапазона 2 метра

При сборке использованы преимущественно SMD-элементы: резисторы и конденсаторы дюймового типоразмера 0805 (но возможна их замена на элементы дюймового типоразмера 1206). Подстроечные резисторы и конденсаторы, также применяемые для поверхностного монтажа. Все оксидные конденсаторы - на напряжение 6,3 В.

Катушки контуров бескаркасные (кроме L3), намотаны на оправке 3 мм проводом ПЭЛ 0,5. Катушки L1, L2, L5, L6 содержат по 4 витка, L4 - 5 витков, L7 - 3 витка. Катушка L3, индуктивностью 680 мкГн, используется либо стандартная на 455 кГц в экране высотой 8 мм, либо наматывается на подходящей арматуре с ферритовым сердечником и подстроечной чашкой и содержит 150 витков провода ПЭЛ 0,08. Дроссели L8, L9 - чип-индуктивности 0,033 и 0,47 мкГн соответственно, L10 - обычный со штыревыми выводами индуктивностью 1 мкГн. Дроссель L11 имеет 5 витков провода ПЭЛ 0,5, намотанных на оправке 2,2 мм, и располагается на плате вертикально.

Диоды VD1, VD2 VD6, VD7, VD9 - КД521, КД522. Диод VD3 - диодная сборка серии BAV70 с объединенными катодами (в радиостанции диоды включены параллельно), a VD10, VD11 - BAV99, содержащая два последовательно включенных диода (их средняя точка подключена к конденсатору С69 и резисторам R64, R65). Светодиод VD5 - АЛ102А, VD4 - двухцветный (два диода в одном корпусе). Транзистор VT3 - отечественный SMD КТ368А9. В НЧ и коммутирующих цепях также применяются отечественные SMD транзисторы PNP - КТ3129А9 и NPN - КТ3130А9. Микросхема DA4 - КФ1015ПЛ4.

Микрофон - любой электретный, диаметром 6 мм, динамическая головка ВА1 - любая, диаметром 40 мм, сопротивлением обмотки 8 Ом.

Миниатюрная ЧМ радиостанция диапазона 2 метра

Для экранирования контура ГУН используется самодельный прямоугольный экран размерами 8x11 мм, выполненный из полоски белой жести шириной 7 мм. Для его подпайки на плате есть контур без маски. После настройки сверху он закрывается П-образной пластинкой из того же материала и запаивается в двух-трех точках.

Файлы прошивки микроконтроллера и трассировки печатных плат

При соблюдении всех указанных номиналов схема работает практически сразу и требует только минимальной подстройки. Перед началом настройки рекомендуется обесточить выходной каскад передатчика. Для этого нужно отпаять один вывод дросселя L11. Выключить шумоподавитель поворотом резистора R16 или временно установив перемычку вместо SB2.

В первую очередь следует настроить ГУН. Для этого нужно измерить напряжение на выводе 15 микросхемы DA4 и при нажатой передаче, раздвигая витки катушки L4, установить напряжение примерно 1 ...1,3 В. При отпускании передачи в режиме приема напряжение должно оставаться примерно таким же. Если оно сильно отличается, то следует подобрать резистор R46 так, чтобы разница в режимах прием-передача была минимальной. После этого катушку L4 следует залить парафином.

Миниатюрная ЧМ радиостанция диапазона 2 метра

Далее необходимо подключить к антенному выходу частотомер и при передаче подстроечным конденсатором С29 выставить частоту, соответствующую положению переключателя (частоты определяются программой прошивки DD1). Выставить девиацию резистором R65 можно по приборам или с использованием контрольной станции по наиболее громкому, неискаженному звучанию при разговоре вблизи микрофона. Затем подать с ГСС на вход приемника радиосигнал соответствующей частоты с девиацией 3...4 кГц и настроить приемник катушкой L3 по максимально громкому и неискаженному сигналу. Для завершения наладки приемника выставить максимальную чувствительность, слегка раздвигая витки катушек L1 и L2.

После выполнения всех предыдущих работ впаять на место дроссель L11, подключить к разъему XW1 эквивалент нагрузки 50 Ом и измерить на нем напряжение при передаче. Максимум отдаваемой мощности устанавливают, слегка раздвигая витки катушек L5 и L6. Напряжение на нагрузке должно быть не менее 11...12 В, что соответствует выходной мощности 2,4...2,8 Вт.

Затем резистором R16 выставляют порог ШП. Без сигнала станция должна полностью молчать и уверенно включаться даже при слабом сигнале с шумами.

Антенна радиостанции резонансная с электрической длиной провода 0,75 длины волны. Изготавливается антенна на основе отрезка телевизионного 75-омного кабеля RCI, с внешним диаметром 7 мм, длиной 10 см. С него нужно снять внешнюю оболочку, удалить оплетку и центральный проводник. Вынимается это легко, без усилий. Затем оболочку одевают обратно. На расстоянии около 10 мм от края, используя "родной" центральный проводник, делают прокол изоляции и конец проводнмка выводят наружу по центру, а другой откусывают и изгибают на изоляцию для дальнейшей подпайки к нему провода спирали.

Для спирали используется вдвое сложенный провод МС в фторопластовой изоляции, с внешним диаметром 0,5 мм. Намотку выполняют виток к витку. Длина сложенного вдвое проводника составляет 106 мм. Но лучше взять заведомо большую длину, около 115 мм, а затем произвести точную настройку укорачиванием. Один конец проводника подпаивается к центральному проводнику и аккуратно заплавляется во внутрь изоляции. После этого производится намотка и провод фиксируется на конце. Со стороны центрального проводника устанавливают разъем. Затем на всю конструкцию одевают термоусадочную трубку и подогревом над легким пламенем фиксируют ее.

Настраивают антенну с помощью измерителя АЧХ или по индикатору напряженности поля с использованием самой радиостанции. В этом случае выходной каскад передатчика лучше обесточить. Мощность ВЧ на выходе при этом около 30 мВт, что вполне достаточно для работы даже самого простого индикатора поля.

Настройку с помощью приборов АЧХ выполнить проще. Соединяют вход прибора с выходом оконечного каскада (по схеме это точка 3) и подключают в эту точку антенну. Откусывая антенну по длине, добиваются резонанса на частоте 143 МГц. В свободном пространстве без влияния проводов прибора резонанс антенны будет в районе 145 МГц. Конец антенны после настройки снова прогревают для усадки трубки и торец заливают термоклеем.

Авторы: Александр Шатун (UR3LMZ), г.Дергачи, Украина, Александр Денисов (RA3RBE), г.Москва, Россия

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Сердцу вредит низкая гравитация в космосе 24.09.2024

Космическое пространство - это суровая среда, которая оказывает влияние на человеческий организм, особенно на сердечно-сосудистую систему. Условия низкой гравитации, в которых астронавты находятся в течение длительного времени, могут привести к серьезным последствиям для сердца. Недавнее исследование ученых Университета Джона Хопкинса пролило свет на то, как невесомость может ослабить ткани сердца, нарушить их нормальные функции и вызвать изменения, характерные для сердечной недостаточности. Влияние космоса на организм стало объектом пристального внимания, поскольку длительные космические миссии, такие как полеты на Марс, требуют глубокого понимания рисков для здоровья.

Для эксперимента исследователи отправили 48 образцов биоинженерных тканей человеческого сердца на Международную космическую станцию (МКС), где они находились в течение 30 дней. Эти ткани представляли собой кардиомиоциты - клетки сердечной мышцы, полученные из индуцированных плюрипотентных стволовых клеток человека (iPSC). Процесс создания таких клеток был разработан Джонатаном Цуем, который позже продолжил изучать влияние космоса на ткани сердца под руководством профессора Кима.

Исследование выявило значительные изменения в сердечных тканях, побывавших в космосе. Ткани ослабли, а их сокращения стали менее ритмичными по сравнению с контрольными образцами, которые находились на Земле. Ученые отметили, что ткани "плохо чувствовали себя в космосе": сила их сокращений сократилась почти в два раза. Также в них появились признаки окислительного стресса и повреждения митохондрий - структур клеток, ответственных за выработку энергии. Эти изменения могут быть связаны с теми же процессами, которые наблюдаются у астронавтов, возвращающихся на Землю после длительных миссий, включая аритмии и снижение функции сердечной мышцы.

Для сбора данных о работе тканей на МКС использовался специально разработанный миниатюрный "тканевой чип", который имитировал среду сердца взрослого человека. Камеры с образцами тканей были доставлены на борт миссии SpaceX CRS-20 в марте 2020 года. В течение 30 дней каждые полчаса собирались данные о силе сокращений тканей и ритме их биения. Аналогичные образцы оставались на Земле для контроля, что позволило исследователям точно сравнить результаты.

После возвращения тканей с МКС выяснилось, что сердечные клетки в условиях невесомости не только теряли силу, но и развивали аритмии - нерегулярные паттерны биения, которые могут стать причиной сердечной недостаточности. Время между ударами сердца в этих образцах увеличилось почти в пять раз по сравнению с нормой. Однако, по мере возвращения на Землю, ритм биения постепенно нормализовался, что указывает на возможность восстановления функций сердца после возвращения из космоса.

Биохимические исследования также показали, что в космических условиях сердечные ткани продемонстрировали повышенную активность генов, связанных с воспалением и повреждением клеток. Кроме того, саркомеры - белковые структуры, обеспечивающие сокращение сердечной мышцы, - стали короче и менее организованными, что является еще одним признаком сердечных заболеваний. Эти наблюдения имеют важное значение для понимания того, как космос влияет на здоровье астронавтов и как можно предотвратить негативные последствия.

Чтобы углубить исследование, команда профессора Кима в 2023 году отправила на МКС вторую партию биоинженерных сердечных тканей. В этот раз они намерены протестировать препараты, которые могут защитить клетки от вредного воздействия невесомости. Эти усилия помогут разработать методы профилактики и лечения сердечных заболеваний, как для астронавтов в космосе, так и для людей на Земле.

Выводы этого исследования подчеркивают важность продолжения изучения влияния космоса на здоровье человека. Помимо низкой гравитации, значительное внимание должно быть уделено воздействию космической радиации, особенно для миссий за пределами магнитного поля Земли. Это исследование может привести к прорывам в поддержании здоровья астронавтов во время длительных полетов и к новым подходам в борьбе с возрастными сердечными заболеваниями у земных жителей.исследования, чтобы понять влияние космической радиации на сердечно-сосудистое здоровье астронавтов во время длительных миссий вне этой защитной зоны.

Другие интересные новости:

▪ Когда вода опьяняет

▪ Персональный кондиционер

▪ Новогодние Hi-Tec-подарки - дешево и полезно

▪ Человек топает сильнее слона

▪ Самый крепкий клей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Освещение. Подборка статей

▪ статья Видеомонтаж свадьбы. Искусство видео

▪ статья Почему большинство японских абитуриентов берут на экзамен шоколадки Kit Kat? Подробный ответ

▪ статья Коровий горох. Легенды, выращивание, способы применения

▪ статья Цветовая маркировка диодов. Энциклопедия радиоэлектроники и электротехники

▪ статья Фокус с королями и дамами. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025