www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

Высокоуровневый смеситель для трансиверов прямого преобразования

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Приемники и трансиверы с прямым преобразованием частоты завоевали широкую популярность, но их параметры, достигнутые к концу 80-х годов, с тех пор практически не улучшились. Заметный прогресс в этом направлении получается, как показывает автор публикуемой статьи, при использовании в смесителе трансивера (приемника) полевых транзисторов, включенных в пассивном режиме управляемого сопротивления.

Достоинства гетеродинных приемников (прямого преобразования) широко известны. Это - простота, практически полное отсутствие побочных каналов приема, высокое качество демодулированного сигнала и т. д. Но есть у них и недостатки. Это - двухсигнальный прием и небольшой динамический диапазон, не превышающий для приемников с диодными смесителями 80 дБ.

Перспективным представляется применение смесителей на полевых транзисторах, включенных в режиме управляемого сопротивления. Подобный смеситель, выполненный на одном полевом транзисторе и описанный в [1], обеспечивал чувствительность гетеродинного приемника 1 мкВ и динамический диапазон 65 дБ.

Здесь уместно сказать, что динамический диапазон смесителя гетеродинного приемника ограничен сверху не интермодуляционными искажениями третьего порядка, как в приемниках с высокой ПЧ, а прямым детектированием мешающих сигналов. Нижнюю границу динамического диапазона полагают равной чувствительности (при заданном отношении сигнал/шум - обычно 10 или 12 дБ), а верхнюю границу определяют, подавая на вход приемника AM сигнал с коэффициентом модуляции 30 % (m = 0,3), расстроенный по частоте на 50 или 100 кГц, с амплитудой, обеспечивающей такой же выходной сигнал 3Ч, как и при определении чувствительности. В американской литературе разницу между границами динамического диапазона приемника прямого преобразования часто называют AMRR - AM rejection ratio.

Теория радиотехнических цепей говорит, что при переходе от однотактной схемы смесителя к балансной динамический диапазон расширяется на 30...40 дБ, что позволяет надеяться получить его значение для балансного смесителя на полевых транзисторах порядка 100 дБ. Один из вариантов балансного смесителя на полевых транзисторах описан в [2], но он содержит симметрирующий низкочастотный трансформатор, который трудоемок в выполнении и подвержен наводкам сети с частотой 50 Гц.

Вниманию читателей предлагается новый вариант смесителя. Он использовался в гетеродинном приемнике на диапазон 160 метров, схема которого показана на рисунке. Разумеется, ничто не мешает использовать смеситель и в других диапазонах, изменив соответствующим образом данные контуров и трансформаторов. Входной сигнал от преселектора (двух-, трехконтурный полосовой фильтр, на рисунке не показан) поступает на ВЧ трансформатор Т1 и далее на смеситель, выполненный на полевых транзисторах VT1 - VT4.

Высокоуровневый смеситель для трансиверов прямого преобразования

Гетеродин приемника собран на транзисторе VT5. Так как гетеродин практически не нагружается смесителем, он выполнен однокаскадным по схеме емкостной трехтонки. По той же причине оказалось возможным отказаться и от буферного каскада. Стабильность сравнительно низкой частоты гетеродина (1,8 МГц) оказалась вполне достаточной.

Преобразованный сигнал 3Ч проходит через ФНЧ C1L3C2 и поступает на УЗЧ, собранный на двух биполярных транзисторах VT6 и VT7 по обычной схеме с непосредственной связью между каскадами. К его выходу можно подключать высокоомные чувствительные телефоны, а лучше - оконечный УМЗЧ, выполненный по любой известной схеме.

Устройство работает следующим образом: при положительном полупериоде напряжения гетеродина на затворах транзисторов VT2 и VT3 они открываются. При этом нижний по схеме вывод вторичной обмотки трансформатора Т1 замыкается на общий провод через открытый канал транзистора VT2, а верхний по схеме вывод той же обмотки через открытый канал транзистора VT3 оказывается подключенным ко входу ФНЧ. Транзисторы VT1 и VT4 при этом закрыты, так как на их затворы напряжение гетеродина подается в противо-фазе и на них действует отрицательная полуволна.

В следующий полупериод гетеродинного напряжения открываются транзисторы VT1 и VT4, а транзисторы VT2 и VT3 закрываются. При этом полярность подключения вторичной обмотки трансформатора Т1 ко входу ФНЧ меняется на противоположную. Если частота и фаза гетеродина и сигнала совпадают, то на выходе смесителя появляются импульсы положительной полярности. При изменении фазы гетеродина на противоположную на выходе смесителя импульсы будут отрицательной полярности. Сглаженные в ФНЧ, они дают на выходе постоянный ток. В обоих случаях происходит синхронное детектирование сигнала. Если же частоты не совпадают, то на выходе появляется сигнал биений.

Данный смеситель отличается следующими особенностями:

- в нем отсутствует симметрирующий низкочастотный трансформатор;

- обмотка ВЧ трансформатора не содержит средней точки, что исключает влияние несимметричности обмоток трансформатора;

- паразитные емкости сток-затвор транзисторов VT1 и VT3, а также VT2 и VT4 подключены к противофазным выводам катушки связи с гетеродином L2 и образуют сбалансированный мост, не позволяющий напряжению гетеродина попадать во входную цепь, что существенно снижает излучение гетеродина через антенну.

Излучение гетеродина, кроме очевидного вреда - создания помех близкорасположенным приемникам, - чревато паразитным приемом того же сигнала, но уже промодулированного фоном переменного тока и другими помехами где-нибудь на проводах сети или в посторонних источниках питания [2]. При этом прослушивается трудно устранимый рычащий звук, пропадающий при отключении антенны.

Несколько слов о входном и выходном сопротивлениях смесителей. Как известно, входное и выходное сопротивления пассивного смесителя зависят друг от друга, но их значения могут выбираться в значительной степени произвольно. Классическим способом выбора оптимального нагрузочного сопротивления смесителя является определение среднегеометрического сопротивления открытого и закрытого канала смесителя, при этом Rнaгp = √Rоткp·Rзакр.

Определение сопротивления открытого канала Rоткp трудностей не вызывает. Оно составляет десятки ом. Что касается сопротивления закрытого канала Rзакр, оно носит активно-емкостный характер. Если допустить паразитную емкость закрытого канала 1 пФ, то его сопротивление уменьшается от 80 кОм в диапазоне 160 м до 5 кОм в диапазоне 10 м, не говоря уже об УКВ диапазонах.

Приняв Rоткp = 50 Ом, получим Rнaгp - 2 кОм в диапазоне 160 м и Rнaгp = 500 Ом в диапазоне 10 м. Кроме того, высокие сопротивления нагрузки смесителя в гетеродинном приемнике требуют установки ФНЧ с высоким характеристическим сопротивлением. Индуктивности такого ФНЧ содержат много витков и трудоемки в изготовлении. Поэтому, по мнению автора, имеет смысл снижать нагрузочное сопротивление смесителя до величины порядка 10Rоткp, т. е. примерно до 500 Ом. При этом дополнительные потери в смесителе составляют 10 %, уменьшение коэффициента передачи смесителя не превосходит 1 дБ относительно случая идеального согласования, что представляется вполне допустимым.

Вернемся к схеме приемника. Транзисторы КП305Ж, использованные в смесителе, при нулевом напряжении на затворе имеют сопротивление канала около 400 Ом, а в открытом состоянии - около 25 Ом. Кроме того, у них довольно велик разброс сопротивлений от экземпляра к экземпляру. При переходе гетеродинного напряжения через нуль одновременно открытые транзисторы VT1 и VT2, а также VT3 и VT4 шунтируют вторичную обмотку трансформатора, уменьшая коэффициент передачи. Поэтому максимальный коэффициент передачи смесителя достигается при подаче на затворы запирающего напряжения -1,5 В. Лучше применить транзисторы КП305 А или Д, практически закрытые при нулевом напряжении на затворе и не требующие постоянного смещения на затворе.

В случае применения более качественных элементов стоит ожидать улучшения параметров. В продаже уже имеются ключевые транзисторы с сопротивлением открытого канала 1...5 Ом. К сожалению, с уменьшением сопротивления (ростом проводимости) канала транзистора растет и паразитная емкость затвор-исток. Интересно, что произведение проводимости канала на паразитную емкость - величина, приблизительно постоянная для разных маломощных транзисторов одного поколения. Уровень сигнала гетеродина, просочившегося через паразитную емкость затвор-исток, примерно пропорционален этому произведению.

Однако все эти соображения становятся несущественными при переходе смесителя в ключевой режим. Это достигается простым увеличением напряжения гетеродина, ведь при мгновенном напряжении на затворе более +5 В транзисторы открываются полностью. В описываемом приемнике после повышения напряжения питания с 9 до 15 В амплитуда напряжения гетеродина на затворах транзисторов также повысилась с 8 до 14 В. Транзисторы практически стали работать в ключевом режиме, что благоприятно сказалось на линейности смесителя, а именно: чувствительность приемника повысилась на 4 дБ, а верхняя граница динамического диапазона - на 6 дБ.

Интересно заметить, что схема смесителя в точности повторяет схему диодного мостового выпрямителя, только вместо диодов включены каналы полевых транзисторов. Кроме того, в выпрямителе диоды открываются входным переменным напряжением с обмотки трансформатора, а в смесителе - напряжением гетеродина. Подобные устройства можно с успехом применять и для синхронного выпрямления вторичного напряжения в высокочастотных преобразователях источников питания, поскольку потери в мощных полевых транзисторах меньше, чем в диодах.

Входной трансформатор смесителя Т1 намотан на кольцевом магнитопроводе К10x6x4 из феррита с магнитной проницаемостью 400. Первичная обмотка содержит 30, а вторичная - 100 витков провода ПЭЛШО 0,1. Катушка гетеродина намотана внавал на обычном пластмассовом каркасе со щечками диаметром 8 и длиной 10 мм. Для подстройки индуктивности служит цилиндрический резьбовой сердечник (СЦР) из карбонильного железа. Намотка ведется тремя сложенными вместе проводами ПЭЛ или ПЭЛШО 0,2...0,3. Число витков - 30, оно уточняется в зависимости от размеров каркаса, при подгонке диапазона частот гетеродина. Из трех получившихся обмоток одна используется в контуре гетеродина (L1), а две другие, соединенные последовательно, образуют катушку связи (L2). Средняя точка катушки получается соединением начала одного провода с концом другого. Катушка ФНЧ L3 намотана на кольцевом магнитопроводе К16x10x8 из феррита 2000НМ. Она содержит 200 витков любого тонкого изолированного провода, рекомендуется ПЭЛШО 0,1.

Налаживание УЗЧ сводится к подбору резистора R1 до получения напряжения на коллекторе VT7, равного половине напряжения питания. При налаживании гетеродина емкость конденсатора С8 рекомендуется подбирать максимально возможной, при которой еще существует устойчивая генерация.

Испытания приемника показали следующие результаты. При работе на прием смеситель обеспечил динамический диапазон, ограниченный прямым детектированием, равный 100 дБ при чувствительности 0,3 мкВ. Другими словами, мешающий AM сигнал с расстройкой 50 кГц, m = 0,3 и уровнем 30 мВ создавал на выходе такое же напряжение 3Ч, как и полезный CW сигнал с уровнем 0,3 мкВ. Приведенный ко входу уровень собственных шумов приемника составил 0,1 мкВ. При проведении экспериментов выключение гетеродина не слишком значительно уменьшало общий шум приемника, что говорит о резервах чувствительности смесителя. Надо заметить, что при экспериментах прослушивались и собственные шумы транзисторного ГСС, свидетельствуя о невысоком качестве его выходного сигнала.

Описанный смеситель, как и все пассивные смесители, может передавать сигнал в любом направлении, т. е. является реверсивным. При работе на передачу, когда на низкочастотный вход смесителя (в точке подключения ФНЧ) подавался сигнал 3Ч напряжением 2 В, амплитуда выходного напряжения DSB сигнала составила 1 В на нагрузке 50 Ом. Неподавленный остаток несущей оказался равным 5 мВ. Это означает, что подавление несущей без применения специальных мер по балансировке достигает 46 дБ. Разумеется, чтобы не ухудшить столь высокое подавление несущей, необходима хорошая экранировка входных цепей и гетеродина.

Литература
  1. Поляков В. Т. Приемники прямого преобразования для любительской связи. - М.: ДОСААФ, 1981.
  2. Поляков В. Т. Трансиверы прямого преобразования. - М.: ДОСААФ, 1984.
  3. Дроздов В. В. Любительские KB трансиверы. - М.: Радио и связь, 1988.
  4. Погосов А. Модуляторы и детекторы на полевых транзисторах. - Радио, 1981, № 10, с. 19 - 21.
Автор: М.Сыркин, UA3ATB

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

раздел сайта Инструкции по эксплуатации

журналы Stereophile (годовые архивы)

книга Современные средства контроля и измерения в электроснабжении. Часть 2. Киреева Э.А., 2006

книга Основы радиотехники. Изюмов Н.М., Линде Д.П., 1983

статья Массы для формовки различных предметов

статья Самодельная ветросиловая установка. Установка и налаживание ветродвигателя

справочник Вхождение в режим сервиса зарубежных телевизоров. Книга №17

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:

[lol][cry][!][?]




Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов