Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сверхрегенеративный приемник на полевом транзисторе. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

Сверхрегенеративные приемники отличаются высокой чувствительностью и большим усилением при исключительной простоте схемы и конструкции. Радиолюбители обычно конструируют сверхрегенераторы с самогашением, иногда капризные в настройке. Лучшими параметрами и стабильностью в работе отличаются сверхрегенераторы с внешним источником гасящих колебаний. Именно такая конструкция и предлагается в публикуемой статье.

Известно, что чувствительность сверхрегенеративных приемников ограничивается собственными шумами регенеративного каскада [1], которые в значительной степени определяются шумовыми свойствами используемого транзистора. Несмотря на то что полевые транзисторы являются менее шумящими, чем биполярные, в литературе практически не встречаются схемы сверхрегенераторов на базе полевых транзисторов. Вниманию радиолюбителей предлагается вариант именно такого приемника. Существенными его достоинствами являются высокая чувствительность (0,5 мкВ при глубине модуляции 0,9 и отношении сигнал/шум 12 дБ), малый ток потребления (1,4 мА при напряжении питания 4 В), широкий диапазон питающих напряжений (3...9 В), малое паразитное излучение (собственно сверхрегенератор потребляет ток 80 мкА).

Внешняя суперизация существенно упрощает настройку приемника и повышает устойчивость его работы. Приемник с успехом может быть использован в традиционных для сверхрегенератора областях применения (в аппаратуре радиоуправления, простейших радиостанциях, радиоохранных устройствах и т. п.).

Принципиальная схема приемника изображена на рис. 1.

Сверхрегенеративный приемник на полевом транзисторе

Сверхрегенеративный детектор собран на малошумящем транзисторе VT1. Каскад представляет собой автогенератор с автотрансформаторной обратной связью. Частота генерации определяется параметрами колебательного контура L1C2, настроенного на 27,12 МГц. Применение двухзатворного транзистора значительно упрощает реализацию режима внешней суперизации. Известно, что значение крутизны характеристики по первому затвору зависит от напряжения на втором затворе. Когда это напряжение равно нулю, крутизна меньше критической и генерация отсутствует. На второй затвор через потенциометр R3 подается напряжение суперизации частотой 60...70 кГц от генератора, собранного на элементах DD1.1 и DD1.2. Конденсатор С5 соединяет второй затвор с общим проводом по высокой частоте и, кроме того, придает импульсам суперизации форму, близкую к треугольной. Регулировка амплитуды импульсов суперизации с помощью потенциометра R3 позволяет плавно изменять время, в течение которого крутизна превышает критическое значение, а значит, и длительность высокочастотных вспышек в контуре L1C2. Тем самым можно изменять режим работы сверхрегенератора, устанавливая либо линейный, при котором достигается максимальная чувствительность, либо нелинейный, при котором наиболее эффективно реализуется АРУ.

Нагрузкой сверхрегенеративного детектора является низкочастотный фильтр R6C6. Полезный сигнал амплитудой порядка 1 ...3 мВ с этого фильтра через конденсатор С9 подается на УНЧ, в качестве которого использованы два оставшихся элемента микросхемы DD1. Отрицательная обратная связь по постоянному току через элементы R5, R7, С10 обеспечивает работу цифровой микросхемы в линейном режиме [2]. Элементы С12, С13, R8 устанавливают частоту среза АЧХ усилителя около 3 кГц.

Резистор R1 служит для образования на первом затворе отрицательного (по отношению к истоку) напряжения смещения, обеспечивающего исходное значение крутизны транзистора VT1 меньше критического. Весьма существенна вторая функция этого резистора. Его сопротивление определяет исходное значение постоянной составляющей тока через транзистор, а значит, и уровень собственных шумов. При указанных на схеме значениях элементов этот ток составляет всего 80...90 мкА, что, помимо прочего, делает весьма малым паразитное излучение сверхрегенератора, поскольку вся потребляемая им от источника питания мощность не превышает 0,5 мВт.

Конденсатор C3 выбран значительной емкости, поскольку он должен шунтировать резистор R1 как на несущей частоте, так и на частотах суперизации и огибающей принятого сигнала.

Основные характеристики приемника приведены в таблицах 1 и 2.

Сверхрегенеративный приемник на полевом транзисторе

Конструкция и детали. Печатная плата приемника изображена на рис. 2 и никаких особенностей не имеет.

Сверхрегенеративный приемник на полевом транзисторе

С незначительным ухудшением характеристик приемника в качестве VT1 можно применить отечественные транзисторы серий КП306, КП350, принимая меры защиты их от статического электричества при монтаже. Следует иметь в виду, что транзисторы серии КП327 выпускаются с очень большим процентом брака, но исправные использовать можно. Конденсатор C3 должен быть керамическим. Его допустимо заменить на любой емкостью, не менее указанной на схеме, при условии подключения параллельно керамического конденсатора 1000 пФ. Для обеспечения стабильной частоты суперизации конденсатор С8 должен быть с малым ТКЕ. Остальные детали могут быть любого типа. Контурная катушка намотана на каркасе диаметром 5 мм и содержит 9 витков провода диаметром 0,35-0,5 мм. Отвод сделан от третьего снизу по схеме витка. В каркас ввинчивается сердечник из карбонильного железа.

Поскольку нагрузочная способность микросхемы К561ЛЕ5А невелика, устройство, подключаемое к выходу приемника, должно иметь входное сопротивление не менее 30 кОм. В качестве усилителя низкой частоты вместо элементов DD1.3, DD1.4 можно использовать УНЧ любой конструкции с коэффициентом усиления не менее 1000. При напряжениях питания более 5 В хорошие результаты дает, например, экономичный ОУ К140УД1208. Суммарный ток потребления при напряжении питания 9 В не превышает при этом 1,5 мА. Мультивибратор вспомогательных колебаний может быть собран и на транзисторах по любой известной схеме. Важно лишь выдержать требуемую частоту и форму гасящих импульсов.

Настройку приемника начинают с проверки правильности монтажа. Затем следует установить движок переменного резистора R3 в левое по схеме положение, включить питание (номинальным является напряжение 4 В) и убедиться, что постоянное напряжение на резисторе R1 лежит в пределах 0,6...0,7 В. В противном случае транзистор неисправен и его нужно заменить. Подключив осциллограф к выводу 10 DD1.2, проверяют наличие прямоугольных импульсов частотой 60...70 кГц. При необходимости уточняют частоту подбором сопротивления резистора R4. Переключив осциллограф на выход приемника и плавно поворачивая движок потенциометра R3, добиваются появления на экране низкочастотных шумов.

Теперь можно подключить к антенному входу генератор стандартных сигналов, установив на его выходе колебания частотой 27,12 МГц, амплитудой 100 мкВ и глубиной модуляции 0,9. Вращением сердечника катушки настраивают контур в резонанс по максимуму амплитуды на экране осциллографа. Вернув движок потенциометра R3 в исходное положение (колебания на выходе приемника при этом исчезнут), следует плавным вращением движка восстановить эти колебания и найти такое его положение, при котором амплитуда напряжения на выходе приемника перестанет нарастать.

Уменьшив входное напряжение до 1 мкВ (при необходимости уточняя настройку контура), контролируют правильность положения движка переменного резистора. Такая настройка соответствует нелинейному режиму сверхрегенератора.

Дальнейшее увеличение с помощью R3 напряжения суперизации нецелесообразно, поскольку полезный сигнал увеличивается незначительно, шумы же возрастают существенно.

Если теперь движок R3 поворачивать в обратном направлении, установится линейный режим, при котором отношение сигнал/шум незначительно улучшается, однако амплитуда выходного сигнала падает. Следует иметь в виду, что хотя интервал питающих напряжений, при котором сохраняются основные параметры приемника, указан 3 - 9 В, для каждого конкретно выбранного напряжения необходимо уточнять оптимальное положение движка переменного резистора R3 по вышеприведенной методике.

При отсутствии ГСС можно воспользоваться передатчиком, с которым предполагается работа приемника, располагая его на таком удалении от приемника, при котором выходной сигнал еще не ограничивается.

В заключение нужно отметить, что, как и у любого сверхрегенератора, помехоустойчивость приемника и его избирательность невелики, поскольку полоса пропускания, численно равная нескольким частотам суперизации [1], составляет 120...140 кГц.

Литература

  1. Белкин М. К. и др. Сверхрегенераторы. - М.: Радио и связь, 1983.
  2. Фролов В. Простые приемники прямого усиления. Радиоежегодник, 1985. - М.: ДОСААФ.

Автор: В.Днищенко, г.Самара

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Радиопередачи на заказ 24.02.2000

В ряде городов США поступил в продажу карманный радиоприемник "Command Audio". Он позволяет из многообразия передач выбирать программы по вашему усмотрению - новости, погода, спорт, литературные и музыкальные передачи и т.д.

По специальному каналу программирования на приемник постоянно поступают кодированные данные о программах радиостанций. С помощью этих сигналов приемник осуществляет своевременное переключение с канала на канал, удовлетворяя вкусы и пристрастия своего владельца. Правда, за использование канала программирования надо ежемесячно платить 15 дол. А стоимость самого приемника 200 дол.

В тех местностях, где упомянутого канала программирования нет, приемник работает в обычном режиме ручной настройки.

Другие интересные новости:

▪ Построен крупнейший в мире коридор чистой энергии

▪ Многоразовая супергубка для впитывания нефти

▪ Открыто новое состояние воды

▪ Безвентиляторный цифровой источник питания Mean Well PHP-3500

▪ Китай - крупнейший в производитель солнечной энергии

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Молниезащита. Подборка статей

▪ статья Битва народов. Крылатое выражение

▪ статья Почему советская цензура запретила Восточную песню в исполнении Валерия Ободзинского? Подробный ответ

▪ статья Оператор машинной стирки. Типовая инструкция по охране труда

▪ статья Сабвуфер для дома, для семьи. Некоторые хитрости. Энциклопедия радиоэлектроники и электротехники

▪ статья Магический квадрат. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024