Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Задающие генераторы импульсных блоков питания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

При проектировании двухтактных импульсных преобразователей напряжения необходимо принять меры по предотвращению сквозного тока через коммутирующие транзисторы. Обеспечить нормальную работу преобразователей можно, если сформировать для управления транзисторами сигнал специальной формы (отличной от меандра).

При конструировании импульсных блоков питания (ИБП), работающих на повышенной частоте, основное внимание уделяют обеспечению их надежности и высокого КПД. Именно этими качествами обладают двухтактные ИБП [1]. Однако без принятия специальных мер по устранению сквозного тока добиться устойчивой работы блоков с приемлемым КПД (80 %) невозможно.

Сквозной ток в двухтактных ИБП возникает из-за конечного (ненулевого) времени выключения коммутирующих транзисторов. Дело в том, что время выключения (tвык) большинства мощных транзисторов, применяемых в ИБП, находится в пределах 1,5...8 мкс, а время их включения (tвкл) примерно в десять раз меньше. Это и приводит к тому, что на повышенной частоте форма тока в цепях коллекторов искажается, становится отличной от меандра. В результате увеличивается длительность импульсов тока и уменьшается, особенно на спаде, их крутизна.

На рис. 1 представлена форма тока базы транзисторов ИБП (диаграммы а и б) и их коллектора (в и г). Из диаграмм видно, что за время уменьшения тока IК1 увеличивается ток IK2, что как раз и приводит к возникновению сквозного тока. На диаграммах в и г штриховой линией показан сквозной ток на фронтах и спадах импульсов тока коллекторов коммутирующих транзисторов.

Задающие генераторы импульсных блоков питания

Радикальный метод устранения сквозного тока - формирование в задающих генераторах (ЗГ) импульсов, отличающихся от меандра и имеющих паузы (tп), длительность которых в первом приближении равна tп = tвык - tвкл. Однако на практике время включения и выключения даже у двух одинаковых транзисторов различно. Зависит оно от напряжения первичного источника питания, температуры переходов, тока коллектора и т. д. Поэтому длительность паузы должна быть больше указанной величины, а лучше - регулируемой.

Цель настоящей статьи - предложить наиболее простые способы формирования импульсов в ЗГ, пригодных для управления ИБП. В ней приведены схемы ЗГ различной сложности, обеспечивающих как фиксированную, так и регулируемую длительность паузы.

Устройство, схема которого показана на рис. 2, позволяет сформировать импульсную последовательность с регулируемой паузой. Тактовый генератор собран на элементах DD1.1-DD1.3. Он вырабатывает импульсы - меандр удвоенной частоты по сравнению с частотой переключения коммутирующих транзисторов (рис. 3, диаграмма а). Дифференцирующая цепь C2R2 формирует короткие запускающие импульсы высокого уровня, которые управляют работой формирователя длительности пауз на элементах DD2.1, DD2.2 (рис.3, диаграмма б).

Задающие генераторы импульсных блоков питания

Задающие генераторы импульсных блоков питания

С выхода формирователя импульсы поступают на входы элементов DD2.3, DD2.4 и триггера DD3.1, которые выполняют функцию распределителя импульсов. На выходах ЗГ (диаграммы д, е) формируются импульсные последовательности, сдвинутые друг относительно друга на 180°, с паузой длительностью tп. Частота импульсов на выходе ЗГ в два раза меньше, чем на выходе тактового генератора. Длительность паузы регулируют переменным резистором R3.

Иногда для управления ИБП необходимо получить импульсы низкого уровня с паузой. В этом случае в схеме рис. 2 элементы DD2.1, DD2.2 микросхемы К561ЛЕ5 заменяют одним элементом микросхемы К561ЛС2, а вместо элементов DD2.3, DD2.4 включают элементы И-ИЛИ по схеме 2ИЛИ. Для этого лишь необходимо на выводы 9 и 14 микросхемы К561ЛС2 подать напряжение высокого уровня.

Если требуется увеличить мощность импульсов и крутизну их фронтов и спадов, в выходных ступенях ЗГ следует применять микросхемы ТТЛ и ТТЛШ. На рис. 4 приведена схема ЗГ на микросхемах ТТЛШ.

Задающие генераторы импульсных блоков питания
(нажмите для увеличения)

Устройство допускает широтно-импульсное регулирование выходного напряжения ИБП. Узел ШИМ собран на элементах DD2.1, VT1, VT2, R3, С3, R5, R6. Диаграммы напряжения показаны на рис. 5. Здесь: Unop - пороговое напряжение переключения элементов DD1.4 и DD2.1; tпф - фиксированная длительность паузы;

tпp - регулируемая длительность паузы;

tир - регулируемая длительность импульса; tи maх, tи min - максимальная и минимальная длительности импульса.

Задающие генераторы импульсных блоков питания

Интервал регулирования длительности импульса - от 0,2 мкс до 18 мкс (при частоте выходных импульсов 25 кГц). Длительность импульсов регулируют изменением напряжения на базе транзистора VT1, который подключает резистор R5 параллельно R6 и тем самым изменяет постоянную времени дифференцирующей цепи C3R6. Резистор R7 обеспечивает гистерезис и предотвращает самовозбуждение элемента DD2.1. На вывод Uynp можно подавать сигнал обратной связи от стабилизатора выходного напряжения ИБП.

При налаживании ЗГ резистором R2 устанавливают длительность паузы, а резистором R5 - минимальную длительность (tn min) формируемых импульсов (диаграмма к).

Следует отметить, что применение ШИМ в ИБП ограничивается тем обстоятельством, что с уменьшением длительности импульсов менее чем tи mах/2 резко снижается КПД ИБП, так как большую часть времени коммутирующие транзисторы находятся в ненасыщенном состоянии. Поэтому применение ИБП с ШИ стабилизацией выходного напряжения ограничено минимальной нагрузкой, обычно не менее 10 % номинальной.

Представляет интерес ЗГ (рис. 6), позволяющий устанавливать длительность паузы без времязадающих дифференцирующих цепей с применением счетчиков К561ИЕ8 (К561ИЕ9).

Длительность паузы можно устанавливать дискретно изменением частоты тактового генератора и коэффициента деления счетчика в пределах, указанных в таблице для частоты выходного сигнала ЗГ 25 кГц. Из таблицы видно, что длительность импульса равна периоду тактового генератора.

Задающие генераторы импульсных блоков питания

В ЗГ использованы микросхемы КМОП, имеющие десятичные счетчики с дешифраторами на выходе, однако это не исключает применение ТТЛ и ТТЛШ микросхем с дешифраторами на выходе. Коэффициент деления изменяют подключением цепи обратной связи (точка е на схеме рис. 6) на вход R счетчика и выхода к распределителю импульсов (точка д) [2]. Частоту тактового генератора регулируют изменением параметров цепи R1C1.

Частота тактового генератора, кГц (период, мкс) Коэффициент деления Длительность паузы, мкс Используемый выход счетчика К561ИЕ8 (вывод)
500 (2) 10 2 0 (3)
450 (2,2) 9 2,2 8 (9)
400 (2,5) 8 2,5 7 (6)
350 (2,9) 7 2,9 6 (5)
300 (3,3) 6 3,3 5 (1)
250 (4) 5 4 4 (10)
200 (5) 4 5 3 (7)
150 (6,6) 3 6,6 2 (4)
100 (10) 2 10 1 (2)

В остальном устройство не отличается от вышеописанных. Эпюры напряжения в точках схемы приведены на рис. 7 для частоты выходных импульсов ЗГ 25 кГц, длительности паузы 4 мкс при коэффициенте деления 5.

Задающие генераторы импульсных блоков питания

В принципе, во всех рассмотренных ЗГ (кроме ЗГ с дискретно изменяемой длительностью паузы, рис. 6) можно применить ШИ управление введением сигнала обратной связи с выхода ИБП на узел регулирования паузы, предусмотрев соответствующее ограничение минимальной и максимальной длительности импульса.

Для гальванической развязки выходного напряжения ИБП от источника первичного напряжения по цепи обратной связи наиболее удобно и просто использовать компараторы в сочетании с оптронами как наиболее простой и дешевый способ.

Однако применение ШИМ приводит к усложнению фильтра в цепи постоянного тока на выходе, что иногда сводит на "нет" массогабаритные и экономические показатели, особенно при малой мощности ИБП и требовании малого коэффициента пульсации выходного напряжения.

Литература

  1. Колганов А. Импульсный блок питания мощного УМЗЧ. - Радио, 2000, № 2,с.36-38.
  2. Бирюков С. А. Применение цифровых микросхем серий ТТЛ и КМОП. - ДМК, 1999.

Автор: В.Козельский

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Использование наноматериалов для очистки разливов нефти 28.01.2025

Нефтяные разливы - серьезная экологическая проблема, которая, к сожалению, периодически возникает в разных уголках нашей планеты. Традиционные методы очистки водной поверхности от нефти имеют ряд существенных недостатков, включая низкую поглощающую способность, токсичность для морской флоры и фауны, а также длительный процесс восстановления экосистемы. Однако, современные нанотехнологии предлагают новое, более эффективное и безопасное решение этой проблемы.

Использование наноматериалов для очистки разливов нефти представляет собой многообещающий и экологически устойчивый подход, - считает ведущий автор исследования Хуэйфан Би, аспирант кафедры строительства, гражданской и экологической инженерии в Школе инженерии и компьютерных наук Джинны Коди. Группа исследователей провела масштабный анализ около 50 научных работ, посвященных применению нанотехнологий в борьбе с прибрежными разливами нефти.

Несмотря на многообещающие результаты, полученные в лабораторных условиях, ученые призывают к осторожности и отмечают необходимость приоритетного использования устойчивых и экологически чистых наноматериалов для минимизации возможных экологических рисков. Они также подчеркивают важность расширения масштабов испытаний для более точной оценки эффективности наноматериалов в полевых условиях, максимально приближенных к реальным.

По словам научного руководителя исследования Чуньцзяна Аня, появление наноматериалов в качестве средств ликвидации последствий разливов нефти происходит в критический момент, поскольку угрозы разливов нефти теперь затрагивают как традиционные, так и новые регионы, включая даже ранее считавшиеся относительно безопасными в этом отношении арктические территории. Глобальное потепление и активное освоение Арктики делают проблему нефтяных разливов в этом регионе особенно актуальной.

Исследователи видят необходимость активного сотрудничества с правительствами и частным сектором для информирования о новых разработках в области нанотехнологий и их последующего включения в будущие рекомендации по рекультивации загрязненных территорий. Только совместными усилиями можно достичь эффективного и безопасного решения проблемы нефтяных разливов.

В заключение можно сказать, что использование наноматериалов для очистки разливов нефти представляет собой перспективное направление в борьбе с этим экологическим бедствием. Несмотря на некоторые ограничения и риски, связанные с использованием нанотехнологий, они могут предложить более эффективные и быстрые способы ликвидации последствий нефтяных разливов, снизив при этом негативное воздействие на окружающую среду.

Дальнейшие исследования в этой области и активное сотрудничество между наукой, бизнесом и государством могут привести к созданию новых, революционных методов борьбы с нефтяными загрязнениями, которые помогут сохранить природу для будущих поколений.

Другие интересные новости:

▪ Материал с превосходной защитой от электромагнитных помех

▪ Музыка из автомата

▪ Thubber: сверхэластичная резина со свойствами металла

▪ 3D-принтер с голосовым управлением

▪ Созданы наночастицы, которые уменьшают отек мозга

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Телефония. Подборка статей

▪ статья Акушерство и гинекология. Конспект лекций

▪ статья Почему Карфаген враждовал с Римом? Подробный ответ

▪ статья Куратор отдела регистрации. Должностная инструкция

▪ статья Реле времени с индикацией отключения. Энциклопедия радиоэлектроники и электротехники

▪ статья Вертикальная антенна на 144 МГц. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025