Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Зарядное устройство малогабаритного Li-ion аккумулятора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Как известно, интегральные стабилизаторы напряжения (ИСН) с регулируемым выходным напряжением К142ЕН3 и К142ЕН4 имеют встроенную систему защиты от перегрева и перегрузки по току и допускают включение и выключение внешним сигналом (подробную информацию о них можно найти в статье Ю. Игнатьева "Микросхемы К142ЕН3 и К142ЕН4", опубликованной в "Радио", 1986, № 4-6). Высокая стабильность выходного напряжения позволяет применять эти ИСН, например, в устройствах зарядки малогабаритных Li-ion аккумуляторов.

Зарядное устройство малогабаритного Li-ion аккумулятора
Рис. 1

Схема возможного варианта такого устройства показана на рис. 1. Микросхема К142ЕН3 (DA1) включена по типовой схеме. Резистор R4, предназначенный для ограничения максимального тока нагрузки узлом встроенной защиты ИСН, задает ток зарядки 125 мА до момента, когда напряжение на аккумуляторе достигает заданного делителем R6-R8 значения 4,2 В. Далее ток начинает уменьшаться, и когда он становится равным 12,5 мА, зарядка прекращается.

Для выключения зарядки используется вход (вывод 6) включения/выключения ИСН DA1. Его состоянием управляет узел на элементах VT1, VD1, R1-R3. В начале зарядки напряжение на резисторе R2 находится в интервале 0,75...0,85 В (зависит от типа диода VD1) и транзистор VT1 открыт. На выводе 6 относительно вывода 8 - низкий уровень напряжения (около -0,7 В), поэтому микросхема DA1 включена и аккумулятор G1 заряжается. Светодиод HL1 ярко светит. В конце зарядки, по мере уменьшения тока, диод VD1 закрывается и напряжение на эмиттерном переходе транзистора VT1 определяется зарядным током, текущим через резистор R2. Когда он уменьшается, как сказано выше, до 12,5 мА, падения напряжения на этом резисторе становится недостаточно для поддержания транзистора VT1 в открытом состоянии и он закрывается. Входным напряжением, поступающим на вывод 6 через резистор R1, микросхема DA1 выключается и зарядка прекращается, о чем свидетельствует резкое снижение яркости свечения светодиода HL1, вплоть до погасания.

Диод VD1 ограничивает падение напряжения на резисторе R2 во время зарядки, обеспечивая тем самым на выводе 6 безопасный для микросхемы уровень отрицательного (по отношению к выводу 8) напряжения, а VD2 отключает светодиод от заряженного аккумулятора по окончании зарядки. Конденсатор С2 обеспечивает включение устройства при подаче питания.

Авторский вариант устройства рассчитан на зарядку малогабаритного литий-полимерного аккумулятора LP052030 (фирмы ЕЕМВ) номинальным напряжением 3,7 В и емкостью 0,25 Ач. Ввиду малого тока зарядки теплоотвод для микросхемы К142ЕН3 не потребовался. Все детали размещены на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2.

Зарядное устройство малогабаритного Li-ion аккумулятора
Рис. 2

Резисторы - любые малогабаритные указанной на схеме мощности рассеяния, конденсатор C3 - керамический КМ, остальные - оксидные импортные, транзистор VT1 - любой маломощный структуры n-p-n со статическим коэффициентом передачи тока базы h21э не менее 200. Микросхема DA1 установлена на стороне печатных проводников, остальные детали - на противоположной стороне. Внешний вид смонтированной платы показан на рис. 3. Чтобы не повредить печатные проводники многократной пайкой, подборные резисторы R2, R4 и R8 при налаживании рекомендую припаивать не к печатным проводникам, а к временно припаянным к ним стойкам из луженого провода диаметром 0,5...0,8 мм.

Зарядное устройство малогабаритного Li-ion аккумулятора
Рис. 3

В устройстве применимы микросхемы К142ЕН3 и К142ЕН4 (в металлокерамическом корпусе) с любым буквенным индексом. Можно использовать и КР142ЕН3, КР142ЕН4 (в пластмассовом корпусе), изменив соответствующим образом трассировку печатных проводников на плате.

Ток зарядки можно увеличить до 1 А. Для этого, конечно, придется уменьшить сопротивление резисторов R2, R4, заменить более мощным диод VD1, а микросхему установить на теплоотвод. Для уменьшения влияния на стабильность порога выключения диод следует выбирать с максимально допустимым током, близким к начальному току зарядки.

В качестве источника питания подойдет любой, обеспечивающий требуемый ток зарядки при выходном напряжении 9...11 В (большее значение соответствует току зарядки 1 А). Необходимость повышения входного напряжения обусловлена увеличением падения напряжения на регулирующем элементе стабилизатора К142ЕН3, К142ЕН4. При использовании источника на основе понижающего трансформатора и выпрямительного моста необходимо установить на его выходе сглаживающий конденсатор емкостью 1000...10000 мкФ при токе зарядки 0,1.1 А соответственно.

Налаживают устройство в такой последовательности. Не подключая аккумулятор, соединяют проволочной перемычкой выводы 6 и 8 микросхемы DA1 и, подав на вход напряжение питания, подбором резистора R8 устанавливают на конденсаторе C4 напряжение 4,2 В (допускаемое отклонение - не более ±25 мВ). Для облегчения этой операции можно временно заменить резистор R8 включенным реостатом подстроечным (сопротивлением 22...33 кОм). Добившись с его помощью напряжения, близкого к требуемому, измеряют сопротивление введенной в цепь части резистора, отбирают из имеющихся в распоряжении постоянные резисторы близкого сопротивления и устанавливают на плату тот, при подключении которого выходное напряжение не выходит за указанные выше пределы. Оставлять в устройстве подстроечный резистор вместо подобранного постоянного не рекомендую из-за недостаточной стабильности сопротивления между движком и резистивным элементом большинства типов доступных подстроечных резисторов.

Далее присоединяют разряженный аккумулятор с подключенным последовательно с ним (проводами минимально возможной длины!) амперметром и подборкой резистора R4 устанавливают ток зарядки, равный 0,5 С (С - емкость аккумулятора, в нашем случае - 0,25 А ч). После этого удаляют проволочную перемычку между выводами микросхемы и ставят аккумулятор на зарядку. В ее конце, когда зарядный ток уменьшится до 0,05 С, подборкой резистора R2 (по резкому, почти полному погасанию светодиода HL1) добиваются выключения микросхемы.

Автор: С. Глибин

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Амарант улучшает качество биогаза 19.03.2025

Недавние исследования, проведенные производителями амаранта, подтвердили, что использование этой культуры в качестве сырья для производства биогаза может существенно улучшить качество и эффективность процесса. Особенно заметно увеличивается выход метана, что делает амарант перспективным компонентом в биогазовой промышленности.

Добавление амаранта в субстрат для сбраживания помогает активировать процессы разложения сырья, что в свою очередь увеличивает количество метана в биогазе. Согласно результатам исследований, использование амаранта позволяет повысить выход метана в 9 раз по сравнению с обычными методами. В экспериментах, в которых использовался свекольный жом с амарантовым сырьем, содержание метана увеличивалось в 17 раз, при этом общий выход биогаза оставался на уровне контроля.

Амарант оказался универсальным активатором для различных видов брожения. Помимо метанового, эта культура способствует активизации спиртового и оцетокислого брожений, что расширяет возможности ее применения в биотехнологической промышленности.

Особенно интересными являются исследования, проведенные в Словакии, где амарант был рассмотрен как перспективная культура для производства биогаза. Выяснилось, что биогаз из амарантового силоса имеет явные преимущества: высокие урожаи этой культуры позволяют снизить затраты на производство, а сама щирица не требует большого количества удобрений и пестицидов, что также снижает общие производственные затраты.

Таким образом, амарант не только способствует улучшению качества биогаза, но и может стать экономически выгодным сырьем для биотехнологической отрасли, что открывает новые перспективы для более устойчивого и эффективного использования ресурсов.

Другие интересные новости:

▪ Смартфон LG G Pro Lite Dual (D686)

▪ Письмо от тезки

▪ Экологическй синтез мочевины

▪ Беспроводной микроконтроллер TI CC1310F128RGZT

▪ Наножилье для солнцелюбивых бактерий

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Жизнь замечательных физиков. Подборка статей

▪ статья Отелло. Крылатое выражение

▪ статья Что такое эрозия? Подробный ответ

▪ статья Начальник транспортной службы. Должностная инструкция

▪ статья Радиолокационные металлоискатели, теория. Энциклопедия радиоэлектроники и электротехники

▪ статья Передача звука по ИК каналу. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025