Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Двухполярный стабилизатор напряжения с водяным охлаждением, 220/±41 вольт 4 ампера. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Компенсационные стабилизаторы напряжения непрерывного действия последовательного типа обладают невысоким КПД, однако большим коэффициентом стабилизации и низким выходным сопротивлением. Поэтому они все еще имеют широкое распространение. Однако им свойственна низкая надежность при перегрузке или замыкании в нагрузке. Это особенно опасно для транзисторных устройств, поэтому приходится вводить в стабилизаторы сложные узлы защиты с датчиками тока. В рассматриваемом в этой статье мощном двухполярном стабилизаторе напряжения выходной ток ограничен. Устройство не боится перегрузок и может работать на фильтрующие конденсаторы большой емкости.

Анализ схем УМЗЧ позволяет сделать вывод о том, что для питания их выходных ступеней стабилизаторы напряжения непрерывного действия применяют редко. Причины этого - высокая стоимость таких стабилизаторов, большие энергетические потери при их применении, а главное - "и так сойдет", ведь работает и без стабилизатора.

Когда стабилизатора нет, напряжение питания усилителя меняется в зависимости от нагрузки в широких пределах (в AV-ресивере "Pioneer-714" - 30...50 В). Дело в том, что среднее выходное напряжение выпрямителя с емкостным фильтром сильно зависит оттока нагрузки. Причем конденсаторы фильтра заряжаются импульсами в каждом полупериоде сетевого напряжения. Процесс может занять несколько полупериодов, и это частично передается в нагрузку УМЗЧ.

В радиолюбительской литературе неоднократно высказывалось мнение о необходимости питать УМЗЧ от стабилизированного источника для обеспечения более естественного звучания. Действительно, при максимальной выходной мощности усилителя размах пульсаций напряжения нестабилизированного источника достигает нескольких десятков вольт. Это незаметно на пиковых значениях высокочастотных составляющих звуковых сигналов, но сказывается при усилении их низкочастотных составляющих большого уровня, пики которых имеют большую длительность. В результате фильтрующие конденсаторы успевают разрядиться, снижается напряжение питания, а значит, и пиковая выходная мощность усилителя. Если же снижение напряжения питания таково, что приводит к уменьшению тока покоя выходных транзисторов усилителя, это может вызывать дополнительные нелинейные искажения.

Кардинальный способ подавления пульсаций и нестабильности напряжения питания - его стабилизация. Стабилизатор снижает пульсации напряжения на линиях питания на один-два порядка, что позволяет без труда получить максимальную амплитуду выходного сигнала усилителя. Кроме снижения уровня фона частотой 50 (100) Гц, уменьшаются также нелинейные искажения и вероятность ограничения сигнала на пиках громкости. Увеличивается запас по предельно допустимым параметрам транзисторов выходной ступени усилителя. Снижается вероятность проникновения сетевых помех на выход усилителя.

Кроме того, применение стабилизатора позволяет упростить усилитель, что благотворно сказывается на звуке. Еще один плюс - функцию защиты выходной ступени усилителя от перегрузки тоже можно поручить стабилизатору.

Из минусов - реализация мощного и надежного стабилизатора напряжения непрерывного действия становится существенной финансовой проблемой и технически непростой задачей. Помимо этого, возникает необходимость отводить от силовых транзисторов стабилизатора большое количество тепла. Суммарные КПД и рассеиваемая мощность усилителя вместе со стабилизатором гораздо хуже, чем без него.

Для повышения качества источника питания в нем желательно применить сетевой трансформатор с пониженной индукцией. Как известно, пусковой ток обычных трансформаторов достигает значений, значительно превосходящих рабочий ток. Уменьшение амплитуды индукции в магнитопроводе вдвое значительно повышает надежность, уменьшает поток рассеивания трансформатора и уменьшает его пусковой ток до значения, не превышающего номинальный ток холостого хода. Однако меньшая индукция приводит к увеличению необходимого числа витков обмоток и, как следствие, к ухудшению массогабаритных показателей трансформатора, его стоимости и возрастанию потерь энергии на активном сопротивлении обмоток. Но ведь речь идет о действительно высококачественном звуковоспроизведении, не так ли? А звучание усилителя, питающегося стабилизированным напряжением, существенно лучше по сравнению со звучанием того же усилителя без стабилизатора.

Двухполярный стабилизатор напряжения, схема которого изображена на рисунке, предназначен для питания УМЗЧ.

Двухполярный стабилизатор напряжения с водяным охлаждением, 220/±41 вольт 4 ампера
Рис. Двухполярный стабилизатор напряжения (нажмите для увеличения)

Основные технические параметры

  • Число каналов стабилизации .......2
  • Выходные напряжения, В .......+41 и -41
  • Максимальный ток нагрузки каждого канала, А ....... 4
  • Размах пульсаций при токе нагрузки 4 А, мВ.......4,7
  • Рассеиваемая мощность при максимальном токе нагрузки, Вт.......180

Он состоит из двух независимых стабилизаторов напряжения положительной и отрицательной относительно общего провода полярности. Верхняя часть схемы относится к стабилизатору положительной полярности, а нижняя - отрицательной полярности. Схема стабилизатора отрицательной полярности представляет собой, по существу, зеркальное отражение схемы стабилизатора положительной полярности. Поэтому подробно рассмотрим только стабилизатор напряжения положительной полярности.

Переменное напряжение, снимаемое с обмотки II трансформатора T1, выпрямляет двухполупериодный выпрямитель на сдвоенных диодах Шоттки VD3 и VD4 SR30100P, имеющих изолированный корпус, поэтому их удобно крепить на общем теплоотводе.

Через помехоподавляющий дроссель L1 выпрямленное напряжение поступает на сглаживающие и помехоподавляющие конденсаторы C8-C16 и далее на уравнивающие эмиттерные токи параллельно соединенных транзисторов VT1-VT9 резисторы R3-R11. Эти резисторы имеют довольно большое сопротивление, что способствует эффективной "изоляции" коллекторных цепей транзисторов VT1 -VT9 от сетевых помех.

Вместе с транзистором VT20 транзисторы VT1-VT9 образуют мощный составной транзистор с большим коэффициентом усиления тока. Базовый ток транзистора VT20 втекает в коллектор транзистора VT22. Транзистором VT22 управляет напряжение с выхода ОУ DA3.1.

К выходу стабилизатора подключены соединенные последовательно стабилитроны VD13, VD14, суммарное напряжение стабилизации которых служит образцовым для рассматриваемого стабилизатора. Вместо стабилитронов можно установить резистор такого сопротивления, чтобы вместе с резистором R29 он обеспечивал нулевой потенциал в точке их соединения при номинальном выходном напряжении стабилизатора. Но по сравнению со стабилитронами это менее эффективный вариант. Сдвинутый стабилитронами или резистором потенциал в системе стабилизации представляет собой сигнал рассогласования и поступает на инвертирующий вход ОУ DA3.1, неинвертирующий вход которого соединен с проводом "0".

Имейте в виду, что провода "О" и "Общ." должны быть соединены между собой и с общим проводом питаемого от стабилизатора устройства (усилителя) на плате последнего. Это значительно уменьшает уровень наводок и помех в стабилизированном напряжении. Резистор R21 обеспечивает работоспособность стабилизатора, когда к нему не подключен усилитель.

В процессе работы ОУ непрерывно сравнивает потенциал на своем инвертирующем входе с нулевым потенциалом на неинвертирующем входе. Далее он так управляет транзистором VT22, а вместе с ним и составным транзистором VT20, VT1-VT9, чтобы на выходе стабилизатора поддерживалось заданное напряжение.

Предположим, напряжение на выходе стабилизатора уменьшилось вследствие увеличения тока нагрузки. Потенциал на инвертирующем входе ОУ DA3.1 станет отрицательным относительно неинвертирующего, и напряжение на выходе ОУ увеличится. Это приведет к увеличению коллекторного тока транзистора VT22, а с ним базового и эмиттерного тока транзистора VT20. В результате увеличится суммарный коллекторный ток транзисторов VT1-VT9, компенсируя приращение тока нагрузки. Выходное напряжение вернется к прежнему значению.

Устройство мягкого старта на транзисторе VT19 и реле K1 обеспечивают плавное нарастание напряжения на батарее конденсаторов C28-C30, С34- C63 при подключении стабилизатора (первичной обмотки трансформатора T1) к сети. В этот момент через резистор R2 начинает течь ток, заряжающий конденсатор C27. Когда через 30...35 с напряжение, приложенное к стабилитрону VD9, достигает 36 В, он открывается. Это приводит к открыванию транзистора VT19 и срабатыванию реле K1, которое переключает резисторы, ограничивающие выходной ток стабилизатора.

Пока реле не сработало, этот ток ограничен резистором R32 до 450...650 мА, что устраняет бросок тока зарядки батареи конденсаторов С28-C3О, С34-С63 общей емкостью более 100000 мкФ. Сработавшее реле подключает параллельно резистору R32 резистор R35. С этого момента стабилизатор может отдавать в нагрузкуток, достигающий 4 А.

При случайном замыкании выхода стабилизатора с общим проводом ток тоже не превысит 4 А, но резко увеличится мощность, рассеиваемая на транзисторах Vt1-VT9. Однако она не превысит 25 Вт на каждый транзистор. Из этого следует, что стабилизатор напряжения надежен и не боится замыканий в нагрузке.

Чтобы точно установить уровни ограничения тока, необходимо временно заменить резистор R32 переменным резистором сопротивлением около 500 кОм, а резистор R35 не устанавливать. Движок переменного резистора переведите в положение максимального сопротивления. Замкнув выход стабилизатора амперметром, включите стабилизатор и плавно уменьшайте сопротивление переменного резистора, наблюдая за показаниями амперметра. При достижении требующегося безопасного пускового тока выключите стабилизатор, измерьте введенное сопротивление переменного резистора и замените его постоянным резистором такого же сопротивления.

Затем вместо резистора R35 подключите переменный резистор сопротивлением 100 кОм, а к выходу стабилизатора через амперметр - максимальную нагрузку. Включите стабилизатор и дождитесь срабатывания реле. После этого начинайте плавно уменьшать сопротивление переменного резистора. При достижении номинального напряжения стабилизации и заданного максимального тока нагрузки выключите стабилизатор, измерьте введенное сопротивление переменного резистора и замените его постоянным.

Такую же процедуру нужно выполнить и со стабилизатором отрицательного напряжения. Нельзя просто устанавливать резисторы R33 и R36 такого же сопротивления, как соответственно R32 и R35. Дело в том, что коэффициенты передачи тока у транзисторов, примененных в обоих стабилизаторах, существенно различаются. Например, у транзисторов 2SA1943 он - около 140, а у 2SС5200 - только 85.

Трансформаторы T1 и T2 - заказные с пониженной индукцией и вторичными обмотками на 2x54 В (со средними выводами) при токе нагрузки 5 А. Трансформаторы устанавливают каждый со своей стороны в самой нижней части теплообменника (акваблока) системы водяного охлаждения стабилизатора. Акваблок служит своеобразным шасси, на котором размещены все узлы устройства. Перед установкой трансформаторов для них формуют с помощью эпоксидной смолы идеально плоские посадочные площадки. Затем резьбовыми шпильками М12 трансформаторы прижимают к акваблоку.

В режиме холостого хода напряжение на выходах выпрямителей (входах собственно стабилизаторов) - 76 В. При подключении к выходу стабилизатора нагрузки сопротивлением 10 Ом оно падает до 64 В. Если необходим больший ток нагрузки, например 10 А, то номиналы резисторов R3-R20 следует уменьшить до 10 Ом.

Диоды-супрессоры VD1 и VD2 предназначены для гашения перенапряжений во время переходных процессов, сопровождающих включение стабилизатора в сеть.

При правильном монтаже и сборке стабилизатор начинает работать без каких-либо проблем. При непрерывной нагрузке током 4 А на транзисторах VT1-VT9 рассеивается мощность около 60 Вт (по 6 Вт на каждом транзисторе). На каждом из резисторов R3-R11 - по 4 Вт. Совместно стабилизаторы напряжения положительной и отрицательной полярности рассеивают около 180 Вт. Две пары стабилизаторов для питания усилителей левого и правого стереоканалов, установленные на общем акваблоке, рассеивают 360 Вт.

Акваблок состоит из двух отрезков дюралюминиевой шины сечением 100x10 мм и длиной 1000 мм, стянутых винтами по периметру. Для герметизации стыка между шинами применен автомобильный герметик. На внутренней поверхности каждой шины отфрезерованы по две параллельные канавки размерами 960x15x4 мм, по которым течет охлаждающая вода. Общее сечение водопроводящего канала - 15x8 мм, его суммарная длина - 1920 мм, расход воды - 0,75 л/мин, температура воды на входе акваблока - 24 °C, на выходе - 29 °C. Вода поступает из водопровода через одноступенный фильтр.

Четырехлетний опыт эксплуатации такой открытой системы водяного охлаждения показал стабильность ее тепловых параметров. Но систему можно сделать и закрытой с циркуляцией дистиллированной воды через акваблок и внешний автомобильный радиатор.

Транзисторы VT1-VT18 смонтированы на печатной плате с алюминиевой подложкой, прижатой к акваблоку с применением теплопроводной пасты. Температура поверхности платы - около 34 °C. Транзисторы 2SA1943 и 2SС5200 нагреваются до температуры около 50 °C. Испытания показали, что эта температура в течение трех часов работы оставалась неизменной.

Описанная система охлаждения компактна, эффективна и абсолютно бесшумна. Она позволяет отводить около киловатта тепловой мощности. В качестве сигнализатора аварийного отсутствия проточной воды в системе в подводящем ее трубопроводе установлен датчик давления ДРД-40. Он идеально подходит для стандартной водопроводной сети. При аварийном отключении воды контакты этого датчика размыкаются и отключают стабилизатор от электрической сети.

Кроме того, необходимо установить датчики температуры на одном или нескольких транзисторах 2SA1943, которые, как показала практика, нагреваются сильнее, чем транзисторы 2SС5200. Такие же датчики рекомендуется установить и на трансформаторах.

Автор: В. Федосов

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Спутниковая система прогнозирования урожайности картофеля 09.04.2025

Современные технологии стремительно меняют методы ведения сельского хозяйства, делая его более точным и эффективным. Одним из передовых решений в этой области стала система спутникового прогнозирования урожайности картофеля, разработанная шведской агротехнологической компанией Vultus под руководством Пера Карлссона. Этот инновационный сервис использует искусственный интеллект и спутниковые снимки для анализа содержания азота в почве, что позволяет значительно повысить точность прогнозов и оптимизировать использование удобрений.

В отличие от традиционных методов оценки уровня азота, требующих трудоемкого отбора проб непосредственно на полях, технология Vultus применяет дистанционное зондирование с использованием спутниковых снимков высокой четкости, полученных с аппаратов Sentinel-2. Эта система позволяет в режиме реального времени получать данные о состоянии почвы и растений, исключая необходимость в ручном сборе образцов.

Азот является ключевым элементом, влияющим на рост и продуктивность сельскохозяйственных культур. Он определяет эффективность фотосинтеза, уровень дыхания растений и, как следствие, качество и объем урожая. Однако чрезмерное внесение азотных удобрений может привести к негативным последствиям, включая загрязнение окружающей среды и ухудшение плодородия почвы. Технология Vultus помогает избежать этих проблем, обеспечивая фермерам точные рекомендации по дозировке удобрений.

Используемый в системе Vultus алгоритм машинного обучения анализирует многоспектральные данные спутниковых снимков, выявляя различия в содержании хлорофилла в листьях, структуре растительного покрова и уровне влаги. Эти параметры являются важными индикаторами состояния азота в почве и помогают определить, в каких зонах поля требуется корректировка внесения удобрений.

Одним из ключевых преимуществ новой системы является возможность прогнозирования урожайности картофеля уже через 60 дней после посадки. Кроме того, технология позволяет отслеживать водный стресс растений, что помогает оптимизировать полив и повысить устойчивость культур к неблагоприятным погодным условиям.

Раннее получение точных данных о потенциале урожая дает фермерам значительные преимущества. Они могут заранее планировать закупку удобрений, заключать договоры с переработчиками, оптимизировать логистику и улучшать финансовое планирование. Это способствует повышению прибыльности аграрного сектора и снижению рисков, связанных с изменениями погодных условий и неэффективным использованием ресурсов.

Таким образом, внедрение спутниковых технологий в сельское хозяйство открывает новые перспективы для агробизнеса. Система Vultus демонстрирует, как искусственный интеллект и дистанционное зондирование могут преобразовать методы земледелия, обеспечивая более устойчивое и эффективное использование природных ресурсов.

Другие интересные новости:

▪ Смартфон Blackphone с защитой данных

▪ Свое и общее

▪ 3D-шлем для хирурга

▪ Растягивание алмаза

▪ Сладкая вакцина против малярии

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Блоки питания. Подборка статей

▪ статья Садовые дорожки. Советы домашнему мастеру

▪ статья Почему дождь идет только в определенные дни, а не в другие? Подробный ответ

▪ статья Роза. Легенды, выращивание, способы применения

▪ статья Укороченная УКВ-антенна. Энциклопедия радиоэлектроники и электротехники

▪ статья Цифровой измеритель напряжения аккумулятора. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025