Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения на микроконтроллере для питания измерительного прибора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Предлагаемое устройство представляет собой преобразователь постоянного напряжения 3 В в постоянное 9 В. Он выполнен в габаритах девятивольтной батареи "Крона " и предназначен для ее замены в измерительных приборах с автономным питанием. Первичный источник напряжения - два солевых или щелочных гальванических элемента типоразмера AAA. Возможно использование Ni-MH аккумуляторов того же типоразмера. КПД преобразователя - 66...81 %.

Схема преобразователя изображена на рис. 1. Его основной компонент - микроконтроллер ATtiny13A-SU (DD1), тактируемый от внутреннего RC-генератора. Повышающий преобразователь напряжения реализован на транзисторе VT1, дросселе L1, диоде Шоттки VD1 и конденсаторе C4. Транзистор VT2 отключает нагрузку от преобразователя в "спящем" режиме работы микроконтроллера. Стабилитрон VD2 и резистор R5 защищают элементы преобразователя при обрыве (отключении) нагрузки. В нормальном режиме работы ток через защитную цепь отсутствует.

Преобразователь напряжения на микроконтроллере для питания измерительного прибора
Рис. 1. Схема преобразователя

Преобразователь предназначен для работы на постоянную нагрузку. Его выходное напряжение не стабилизировано и зависит от питающего напряжения. Например, оно снижается до 7,6 В при падении питающего до 2,5 В.

Для более полного использования энергии первичного источника питания и сохранения выходного напряжения на заданном уровне микроконтроллер DD1 при запуске преобразователя проверяет напряжение на его выходе. Для этого часть выходного напряжения с движка подстроечного резистора R4 поступает на вход PB4 микроконтроллера, работающий в режиме входа встроенного компаратора напряжения.

Все компоненты преобразователя размещены на плате размерами 48x26 мм из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. Ее чертеж и расположение деталей показаны на рис. 2. На стороне платы, свободной от деталей, в предназначенные для них отверстия впаяны четыре контакта для подключения элементов питания. Контакты вырезаны из листовой латуни толщиной 0,3 мм. Высота контакта - 10 мм, ширина - 5...8 мм, длина лепестка для пайки в отверстие - 2 мм, ширина - 1,5 мм.

Преобразователь напряжения на микроконтроллере для питания измерительного прибора
Рис. 2. Плата преобразователя и размещение элементов на ней

Оксидные конденсаторы - TECAP типоразмера D, остальные конденсаторы и резисторы - типоразмера 1206 для поверхностного монтажа. Подстроечный резистор R4 - СП3-19а-0,5 Вт, дроссель L1 - LQH43CN101K. Выбор дросселя заметно влияет на КПД преобразователя. Например, замена упомянутого выше дросселя на RLB0712 несколько больших размеров увеличивает КПД на 3...5 %, но выводит, к сожалению, габариты преобразователя за пределы габаритов батареи "Крона". Для монтажа этого дросселя на плате предусмотрены контактные площадки с отверстиями, обозначенные L1'. Его монтируют в "лежачем" положении. Замена первоначально примененного в одном из вариантов преобразователя в качестве VD1 диода BAT41 на MBR0540 позволила поднять КПД на 2 %.

Вид на собранный преобразователь со стороны деталей показан на рис. 3, а со стороны установки элементов питания - на рис. 4.

Преобразователь напряжения на микроконтроллере для питания измерительного прибора
Рис. 3. Вид на собранный преобразователь со стороны деталей

Преобразователь напряжения на микроконтроллере для питания измерительного прибора

Рис. 4. Вид на собранный преобразователь со стороны установки элементов питания

Программа микроконтроллера использует его восьмиразрядный таймер, работающий в режиме "быстрая ШИМ", и аналоговый компаратор. Частота повторения импульсов с ШИМ выбрана равной 37500 Гц - максимально возможной при тактовой частоте микроконтроллера 9,6 МГц. К неинвертирующему входу AI N0 аналогового компаратора подключен внутренний источник образцового напряжения.

Таблица

Разряд Сост. Разряд Сост.
SELFPREGEN 1 WDTON 1
DWEN 1 CKDIV8 1
BODLEVEL1 1 SUT1 1
BODLEVELO 1 SUT0 0
RSTDISBL 1 CKSEL1 1
SPIEN 0 CKSEL0 0
EESAVE 1

1 - не запрграммировано
0 - запрграммировано

Поданное на вывод PB4 микроконтроллера контролируемое выходное напряжение поступает на инвертирующий вход компаратора AIN1 через мультиплексор АЦП. Состояние выхода компаратора ACO проверяет подпрограмма обработки прерывания по переполнению таймера T0. Когда ACO=1, происходит инкремент значения в регистре сравнения таймера, что увеличивает коэффициент заполнения импульсов, управляющих транзистором VT1 преобразователя. При ACO=0 это значение остается неизменным, поскольку выходное напряжение уже достигло заданных 9 В.

Таймер отключения преобразователя реализован программно и представляет собой счетчик, декрементируемый по прерываниям от таймера T0. Исходное значение, записываемое в регистры этого счетчика, программа вычисляет по формуле N=Toff·37500, где Toff - требуемая продолжительность работы преобразователя до отключения, с; 37500 - частота повторения управляющих импульсов, Гц. В программе задано Toff=900 с (15 мин). По истечении этого времени микроконтроллер "засыпает", переходя в режим микропотребления энергии POWER DOWN.

Предусмотрена возможность управлять преобразователем с помощью необязательной кнопки SB1, подключение которой показано на схеме рис. 1 штриховыми линиями. Внешний запрос прерывания, генерируемый при нажатии на эту кнопку, возвращает "спящий" микроконтроллер в рабочий режим. А если нажать на нее при работающем преобразователе, микроконтроллер перейдет из рабочего в "спящий" режим, выключив преобразователь. Для обслуживания кнопки в различных режимах программа формирует задержки длительностью 0,5 с. В "спящем" режиме микроконтроллера преобразователь потребляет всего 6...10 мкА, поэтому при наличии кнопки в выключателе SA1 нет необходимости и его можно не устанавливать, заменив перемычкой.

Если кнопка SB1 отсутствует, то повторное после срабатывания таймера отключения включение преобразователя выключателем SA1 возможно лишь через две минуты. В течение этого времени при разомкнутом выключателе микроконтроллер потребляет энергию, запасенную в конденсаторе С2, и находится в "спящем" режиме.

Преобразователь разработан без привязки к конкретному типу измерительного прибора, требующего напряжения питания 9 В. Доработка такого прибора сводится к установке в нем выключателя SA1 или кнопки SB1. Для удобства их можно подключить к преобразователю с помощью миниатюрных разъемов. Обратная замена преобразователя на батарею "Крона" сложностей не вызывает.

После монтажа на плату всех деталей, кроме дросселя L1 и проверки ее на обрывы и замыкания, установите движок резистора R4 в среднее положение и переходите к программированию микроконтроллера. Коды из приложенного к статье файла CONVERTER-DC2.hex должны быть загружены в память программ микроконтроллера. Его конфигурацию следует запрограммировать в соответствии с таблицей. Обратите внимание, что разряд CKDIV8, запрограммированный изготовителем микроконтроллера, нужно распрограммировать.

Все необходимые для соединения с программатором контактные площадки на плате имеются. Если программатор работает лишь при напряжении питания 5 В, подайте это же напряжение и в цепь питания микроконтроллера. Напряжением 3 В нужно будет запитать плату после успешного программирования.

Измерьте ток, потребляемый измерительным прибором, с которым предполагается использовать преобразователь, и нагрузите преобразовать резистором соответствующего сопротивления. Установив на место дроссель L1, подайте на преобразователь питание и подстроечным резистором R4 отрегулируйте выходное напряжение, сделав его

равным 9 В. Перемещение движка подстроечного резистора к его нижнему по схеме выводу увеличивает выходное напряжение, а в обратную сторону - уменьшает. Учтите, что программа изменяет выходное напряжение лишь при включении питания или при выходе микроконтроллера из "спящего" режима.

Выключите преобразователь, подключите к нему реальную нагрузку и вновь включите. Если напряжение отличается от необходимого, откорректируйте его подстроечным резистором R4. Затем измерьте ток, потребляемый от элементов G1 и G2, и рассчитайте КПД преобразователя. У одного из изготовленных мной образцов он получился равным 74 % при напряжении питания 3 В и 64 % при 2 В. С преобразователем, в котором установлен дроссель RLB0712, получен КПД соответственно 78 % и 66 %.

Если при входном напряжении 3 В и токе нагрузки 6 мА выходное напряжение установить равным 9,2 В, то при входном напряжении 2 В оно уменьшится до 8,5 В. При дальнейшей разрядке питающей батареи, когда выходное напряжение снижается до 6,5 В, на индикаторе измерительного прибора появляется символ разряженности батареи питания.

Я изготовил два экземпляра преобразователя: один - для питания мультиметра DT930F+, а второй - для измерителя емкости и индуктивности MY6243. Эти приборы не имеют таймера отключения, поэтому полная разрядка их батарей питания по забывчивости была вполне обычна. После установки в них преобразователей такие неприятности прекратились.

Программу микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2017/01/conv.zip.

Автор: Н. Салимов

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Инновационный лидар Velodyne VLS-128 02.12.2017

Компания Velodyne представила передовой лидар, который, как ожидается, сможет вывести возможности автомобильных систем самоуправления на качественно новый уровень.

Лидар - один из ключевых элементов автопилота в его нынешнем виде. Этот прибор посредством лазерного излучателя сканирует окружающее пространство. На основе информации об отражениях лучей составляется трехмерная карта - с ее помощью вычисляются точные расстояния до тех или иных объектов вокруг машины.

До недавнего времени наиболее мощным лидаром Velodyne был прибор HDL-64 с 64 лазерными лучами. В новом устройстве с обозначением VLS-128 количество лучей увеличено в два раза - до 128. При этом габариты удалось уменьшить на 70 %.

Лидар нового поколения позволяет формировать карту окружающего пространства на расстоянии до 300 метров - это значительно превосходит показатель предшественника. К тому же возросло результирующее разрешение. Устройство подходит для использования в различных климатических условиях, в том числе в засушливых регионах и регионах с большим количеством осадков.

Новый лидар обладает настолько высокой производительностью и точностью, что, по сути, способен заменить все другие датчики в системе автопилотирования.

Другие интересные новости:

▪ Цифровой музыкальный плейер SONY NW-E107

▪ Часовые для морей

▪ Fujifilm и Panasonic разработали органический датчик изображения

▪ Экономичные ARM-процессоры Toshiba для Интернета вещей

▪ Sony Digital Paper DPT-RP1

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья Фэнни Флэгг. Знаменитые афоризмы

▪ статья Как долго верблюд может обходиться без воды? Подробный ответ

▪ статья Саксаул. Легенды, выращивание, способы применения

▪ статья Цельнометаллическая дельта-антенна. Энциклопедия радиоэлектроники и электротехники

▪ статья Шляпа уличного фокусника. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025