Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоматическое зарядное устройство для аккумуляторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Разработанное автоматическое зарядное устройство (АЗУ) позволяет заряжать малогабаритные и пальчиковые аккумуляторы МР3-плееров. цифровых фотокамер, фонарей и т.д. от сети. Применение ею позволяет отказаться от нескольких зарядных устройств и производить полную разрядку аккумуляторов с целью устранения "эффекта памяти", которым обладают широко распространенные никель-кадмиевые (Ni-Cd) аккумуляторы. Зарядное устройство для аккумуляторов реализует патент РФ на полезную модель №49900 от 04.08.2006 г. Прототипом для него послужило зарядное устройство из [1].

Основные особенности автоматического зарядного устройства обеспечиваются применением интегральной микросхемы TL431 (регулируемого стабилитрона) и использованием генератора переменного тока на основе реактивного элемента (в данном варианте - конденсатора). Автоматическое зарядное устройство обеспечивает зарядку "пальчиковых" аккумуляторов типоразмеров AAA и АА стабильным током 155 мА от сети (220 8, 50 Гц). Оно может использоваться и при меньших значениях напряжения сети с пропорциональным уменьшением зарядного тока. Стабильность зарядного тока всецело определяется стабильностью рис.1 питающего  переменного напряжения. В начале заряда батареи аккумуляторов светится сигнальный светодиод, перед окончанием зарядки он начинает мигать, а затем полностью выключается. Зарядное устройство обеспечивает автоматическое снижение зарядного тока (не менее, чем на порядок) при достижении ЭДС заряженной батареи и световую индикацию этого режима.

В автономном режиме работы (без подключения к сети) производится автоматический разряд аккумулятора до напряжения около 0,6 В со световой индикацией процесса. При полностью заряженном аккумуляторе такой разряд начинается с тока примерно 200 мА.

Разряд всей батареи аккумуляторов нерационален, т.к. может усугублять не идентичность составляющих ее аккумуляторов.

Устройство содержит:

  • токоограничивающие конденсаторы С1. С2;
  • резисторы защиты R1, R2;
  • мостовой выпрямитель VD1;
  • цепи регулирования и индикации C3, R3. HL1, R4, R5, VD3, DA1, VS1, VT1;
  • развязывающий диод VD2;
  • цепи заряда R6. R7| C4, G81;
  • цепи разряда К1. R8. HL2. SB1. GB1. Работает АЗУ следующим образом.

Конденсаторы С1 и С2 для переменного тока являются реактивными балластными сопротивлениями и за счет этого обеспечивают ток примерно 155 мА. Для разрядки конденсаторов после выключения устройства служит резистор R1, шунтирующий конденсаторы. Резистор R2 ограничивает амплитуду пускового тока при включении зарядного устройства и служит своеобразным предохранителем при возможном электрическом пробое конденсаторов С1 или С2. Выпрямляет переменный ток диодный мост VD1.

Схема зарядного устройства показана на рис.1.

Автоматическое зарядное устройство для аккумуляторов

Главным звеном цепи регулирования является микросхема управляемого стабилитрона DA1. Она "открывается" при стабильном напряжении 2,5 В на управляющем входе 1, обеспечивая включение симистора VS1. Управляющее напряжение для DA1 получается из напряжения батареи G81 на резистивном делителе R1-R2. Делитель настроен на заряд батареи из двух "пальчиковых" аккумуляторов. Конденсатор С4 фильтрует напряжение в цепи заряда и ограничивает его при переходных процессах заряда конденсаторов С1, С2 (например, при включении АЗУ без нагрузки).

При открывании VS1 весь ток заряда аккумуляторов замыкается через него, развязывающий диод VD2 закрывается, а мощность, потребляемая зарядным устройством от сети, уменьшается. Светодиод HL1 цепи индикации не светится, сигнализируя о заряженности аккумуляторов. Эти процессы повторяются в каждом полупериоде питающего напряжения, поэтому для гашения вспышек светодиода HL1 в начале полупериодов используется фильтр нижних частот R3-C3. Напряжение на C3 не успевает достичь напряжения свечения светодиода, а после срабатывания DA1 включается транзистор VT1, разряжающий конденсатор C3. Стабилитрон VD3 обеспечивает защиту от перенапряжений на входе цепи заряда (ограничивает напряжение на уровне 9 В), например, при неисправности DA1.

Цепь разряда позволяет полностью разряжать и даже в некоторых случаях восстанавливать Ni-Cd аккумуляторы, обеспечивая их работу без потери емкости за счет "эффекта памяти" [2]. В той же статье рекомендуется проводить такие операции для отдельных аккумуляторов примерно через 30 циклов работы. Отмечу, что и более распространенные в настоящее время Ni-MH (никель-металлогидридные) аккумуляторы обладают "эффектом памяти", ко в значительно меньшей степени.

Разряд производится для одного аккумулятора. Вместо второго аккумулятора на время разряда устанавливается его короткозамкнутый габаритный макет. Нажимается кнопка SB1, к аккумулятору подключается лампа HL2, и срабатывает реле К1, контакты которого блокируют кнопку Идет разряд аккумулятора. При напряжении на аккумуляторе около 0,6 В реле К1 размыкает свои контакты, и аккумулятор отключается от цепи разряда. Лампа HL2 обеспечивает индикацию разряда, а также способствует стабилизации разрядного тока. т.к. при уменьшении напряжения ее сопротивление падает.

В принципе, с помощью зарядного устройства можно зарядить и один полностью разряженный аккумулятор с использованием габаритного макета вместо второго. Для этого необходимо контролировать время зарядки t в соответствии с зависимостью: 1=0.011С. (час) где С - емкость аккумулятора (мА-час).

Например, необходимо зарядить аккумулятор емкостью 1000 мА час. Для этого его нужно подключить с помощью АЗУ к сети 220 В на время t=0,011 1000=11 (час). Автоматика и индикация АЗУ в этом случае не работают.

Зарядное устройство собрано в корпусе зарядного устройства от мобильного телефона "Samsung A300" (рис.2). В корпусе для облегчения теплового режима просверлены отверстия диаметром 3 мм. На одну из сторон корпуса через угловую вставку приклеена стандартная аккумуляторная кассета на два аккумулятора типоразмера АА (для размещения цепи разряда). Новый узел с радиокомпонентами установлен вместо старого, причем для светодиода HL1 используется уже готовое отверстие (диаметром 3 мм) в корпусе. Плата для этого узла выполнена из термопластичной пластмассы, например, винипласта. Радиокомпоненты либо приклеены к ней, либо их выводы вплавлены в плату. Все клеевые соединения в зарядном устройстве выполнены клеем 88НТ. Монтаж - навесной.

Самодельное реле К1 изготовлено на основе геркона КЭМ-2 (срабатывает при 15 А-виток). На корпус геркона надета полихлорвиниловая трубочка, на всю длину которой проводом ПЭЛ-1 00,12 мм намотана обмотка из 200 витков. Резистором R8 (рис. 1) подбирается напряжение отпускания реле К1 в пределах 0,6...1 В.

В зарядном устройстве применены резисторы типа МПТ-0,125 (R1. R2 - МЛТ-0,25). пленочные конденсаторы К73-17 на 250 В (С1. С2). оксидные импортные конденсаторы на 10 В (C3, С4), бесцокольная миниатюрная пампа накаливания 3 В/0,1 А и яркий красный светодиод диаметром 3 мм. В устройстве могут быть использованы практически любые кремниевые маломощные транзисторы общего применения.

Найти тиристор с управлением по анодному p-n-переходу мне не удалось, поэтому применил симистор фирмы Motorola (VS1). Он может быть с успехом заменен транзисторным эквивалентом (рис.3). Замена экспериментально проверена.

Правильно собранное из исправных радиокомпонентов зарядное устройство требует только настройки напряжения срабатывания DA1 с помощью резистора R6. Резистор отключают от плюсовой шины и от отдельного источника подают постоянное напряжение 2.9 В на делитель R6-R7 (рис. 1). С установленной батареей аккумуляторов зарядное устройство подключают к сети и подбирают сопротивление R6 так, чтобы начала срабатывать микросхема DA1 (контролируют по свечению светодиода HL1 или с помощью осциллографа). После этого включают R6 на место и окончательно собирают конструкцию.

Элементы C3. R4. VD3 и VT1 можно удалить из схемы без изменения электрических характеристик зарядного устройства. т.к. они повышают лишь его надежность и удобство эксплуатации (обеспечивается лучшая сигнализация окончания зарядки аккумуляторов). Возможно исключение и конденсатора С2. При это немного уменьшится ток заряда.

Это универсальное зарядное устройство. Мой вариант зарядного устройства успешно эксплуатируется уже более года, в том числе, использовался как зарядное устройство для телефона. Для этого в него введены необходимые цепи. Для зарядки меньших аккумуляторов, типоразмера AAA, применяются простейшие переходники, обеспечивающие их контактирование в зарядном устройстве. Кроме того, как уже говорилось, необходим короткозамкнутый габаритный макет аккумулятора типоразмера АА для работы с одним аккумулятором.

Внимание! Электрические цепи зарядного устройства связаны с сетью 220 В! При эксплуатации зарядного устройства необходимо исключить касание токоведущих цепей!

Литература

  1. С.Бирюков. Зарядное устройство с "регулируемым" стабилитроном. - Радио. 2003. №3. С.57.
  2. Б.Степанов. Продлим "жизнь" Ni-Cd-аккумуляторов. - Радио, 2006. №5.

Автор: В.Густков, г.Самара

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Удивление побуждает к исследованию 09.04.2015

Философы говорят, что познание мира начинается с удивления. Значит ли это, если говорить более приземленным языком, что эффективность обучения будет выше, если окружающие нас предметы станут вести себя не так, как им положено? Действительно, так и есть, причем удивление помогает учиться и познавать мир, начиная с самого раннего возраста, когда человек и речью-то еще не овладел.

Психологи из Университета Джонса Хопкинса провели с 11-месячными детьми несколько экспериментов, в которых дети должны были наблюдать за поведением обычных игрушек (мячиков, машинок и т.д.). Но только в одном случае поведение предметов согласовывалось с привычной физикой, а в другом предметы вдруг начинали вести себя совершенно непонятным образом. Например, игрушечная машинка, скатывающаяся с игрушечной горки к какому-то препятствию, не упиралась в него, а проходила насквозь.

В статье в Science авторы пишут, что, столкнувшись с необычной ситуацией, дети лучше запоминали свойства объекта. То есть машинка, которая просто съезжала с горки, слабее задерживалась в памяти, нежели машинка, которая проходила сквозь стену. Более того, странное поведение объекта побуждало детей активно исследовать его: например, ту же машинку начинали колотить о стол, как бы проверяя ее прочность и твердость. Если же предмет внезапно зависал в воздухе, вместо того, чтобы упасть, как полагается, то и ребенок начинал испытывать его, роняя с высоты.

Можно сказать, что дети вели себя, подобно ученым, пытаясь воспроизвести странные свойства объекта, которые наблюдали до этого. И даже новые игрушки, которые ребенок до сих пор не видел, вызывали меньше интереса, чем непонятная ситуация.

Известно, что человек с раннего возраста располагает неким минимумом необходимых знаний об окружающем мире. Так, несколько лет назад в журнале WIREs Cognitive Science была опубликована статья, в которой говорилось, что младенцы могут оперировать элементарной физикой. Например, двухмесячные малыши понимают, что незакрепленный предмет может упасть, а объект, который исчез из поля зрения, все же продолжает где-то существовать; к пяти месяцам у них появляется понимание различий между твердыми и сыпучими или текучими веществами; а десятимесячные осознают разницу между "меньше" и "больше" (хотя "меньше" и "больше" - категории скорее логико-математические, нежели физические). Очевидно, что такое знание не пребывает в голове пассивным грузом, а активно используется - то, что ребенок видит вокруг себя, он сверяет с привычными правилами.

Также удивительно, что удивление (просим прощения за тавтологию) побуждает даже таких маленьких детей, которым нет еще и года и которые еще не научились говорить, к активному исследованию окружающего мира. Можно лишь только пожалеть, что у многих взрослых это свойство психики куда-то бесследно исчезает.

Другие интересные новости:

▪ ИС драйвер для автомобильных систем электронного управления дроссельной заслонкой

▪ Поезд на магнитной подвеске со скоростью до 1000 км/ч

▪ Компактная видеокамера Sony FDR-X3000R

▪ Однокристальная система Dimensity 9000

▪ Управление лазером с помощью звука

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Начинающему радиолюбителю. Подборка статей

▪ статья Контейнеровоз. История изобретения и производства

▪ статья Что мог делать автомат 1912 года, считающийся первой в мире компьютерной игрой? Подробный ответ

▪ статья Телецкое озеро. Чудо природы

▪ статья Чистка металлических частей машин. Простые рецепты и советы

▪ статья Чистка меди аммиаком, кислотой, нашатырем, одеколоном. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026