Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лабораторный источник постоянного напряжения и тока

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

тот лабораторный источник питания радиоаппаратуры - результат практической деятельности небольшой группы ребят из подросткового радиотехнического клуба "Радар" (г. Пенза). Он представляет интерес для тех, кто занимается разработкой аппаратуры на операционных усилителях и современных микросхемах, требующих одно- и двуполярного напряжения питания, регулируемого в достаточно широком диапазоне.

Особенностью этого лабораторного источника питания является узел защиты. Известно, что для некоторых микросхем, рассчитанных на питание от источника двуполярного напряжения, недопустима ситуация, когда одно из них отсутствует. Для исключения таких ситуаций в предлагаемом блоке предусмотрена система защиты, блокирующая работу любого из плеч питающего устройства при замыкании в другом плече. После устранения причины замыкания источник питания автоматически переходит в нормальный режим работы.

Технические характеристики устройства

  • Пределы регулирования выходного напряжения, В......+1,25...18
  • Интервал регулирования ограничения тока нагрузки, А......0,01...1,2
  • Уровень пульсаций в режиме источника тока при Iн=0,1 А, мВ......10
  • Напряжение порога срабатывания устройства блокировки, В......1

Параметры устройства в режиме источника напряжения соответствуют справочным данным на используемые в нем микросхемные стабилизаторы напряжения [1, 2].

Конструктивно оно состоит из двух функционально законченных блоков: двуполярного источника питания нагрузок и узла защиты от замыкания, смонтированных на отдельных печатных платах.

Схема первого из этих блоков показана на рис. 1. Обмотки II и III сетевого трансформатора Т1, диодные мосты VD1 - VD4 и VD5 - VD8 образуют источник двуполярного нестабилизированного напряжения +23...24 В, питающего все узлы и блоки устройства. Источником питания микросхемы DA1 по ее минусовому выводу служит стабилизатор напряжения R11VD14, а микросхемы DA3 - стабилизатор R1VD9.

Лабораторный источник постоянного напряжения и тока

По функционированию и схемотехнике оба плеча источника питания симметричны, поэтому более подробно рассмотрим работу лишь одного из них - плюсового.

Нестабилизованное однополярное напряжение (не более +25 В), пульсации которого сглаживают конденсаторы С1 и С2, через измерительный резистор R5, входящий в измерительный мост, образованный резисторами R2.1 - R5 и стабилитронами VD10 и VD11, подается на вход (вывод 2) микросхемного стабилизатора DA2 с выходным напряжением, регулируемым переменным резистором R10. Питание измерительного моста обеспечивает источник тока, выполненный на полевом транзисторе VT1.

Пока выходной ток стабилизатора меньше установленного значения, падение напряжения на резисторе R5 мало, напряжение на прямом выходе DA1 больше, чем на инверсном, и на выходе 6 ОУ напряжение близко к +21 В. Диоды HL1 и VD13 закрыты и не оказывают влияния на работу стабилизатора DA2.

Если выходной ток становится равным пороговому значению, установленному резистором R2.1, в работу включается измерительный мост. ОУ DA1 переходит в линейный режим, при котором выполняется равенство

UR2.1 + UR3 = UR5 + Uст VD10.

В таком случае выходное напряжение плеча будет зависеть от напряжения на выходе ОУ, который в свою очередь отслеживает падение напряжения на резисторе R5, т. е. ток нагрузки, при котором выполняется указанное выше равенство. Следовательно, при выполнении соотношений R3/R4 = 1 и Uст VD10 = Uст VD11

Iн = R2.1/R4.Uст VD11/R5.

Этой упрощенной формулой можно воспользоваться, если возникнет необходимость пересчитать параметры измерительного моста с учетом имеющейся элементной базы или иных требований. Для более точного отслеживания меньших токов нагрузки сопротивление резистора R5 желательно увеличить. При этом соответственно снизится верхний предел ограничения тока нагрузки.

Принципиально так работает и минусовое плечо источника питания.

Схема блока защиты устройства от замыкания на его выходе или в нагрузке приведена на рис. 2. При подаче на его входы двуполярного выходного напряжения транзисторы VT4 и VT7 открываются и тем самым шунтируют: транзистор VT4 - цепь, образованную светодиодом HL3, резистором R25 и излучающим диодом оптрона U1, а транзистор VT7 - цепь HL4, R29 и светодиод оптрона U2. Транзисторы VT3 и VT6 в это время закрыты. Такое состояние элементов этих цепей системы защиты соответствует работе устройства без замыканий в его внешних цепях.

Лабораторный источник постоянного напряжения и тока

Предположим, что замыкание произошло в нагрузке, подключенной к выходу плюсового плеча источника питания. В таком случае транзистор VT4 закрывается. Это приводит к открыванию транзистора VT6 (через стабилитрон VD24 и резистор R30), что исключает взаимную блокировку системы защиты. Транзистор VT7 после блокировки минусового плеча остается открытым током, поступающим в его базу через резистор R27 и диод VD23. Одновременно открываются светодиод HL3, сигнализируя о возникновении замыкания в цепи +Uвых, и излучатель оптрона U1. В результате резко возрастает ток фотодиода этого оптрона, открывается транзистор VT8 и током коллектора блокирует работу стабилизатора DA4 минусового плеча устройства.

Так работает и аналогичная часть блока защиты при замыкании в нагрузке минусового плеча устройства. Порог же срабатывания блока защиты по напряжению определяется суммарным падением напряжения на диоде VD19 (VD22), эмиттерном переходе транзистора VT4 (VT7), резисторе R20 (R26) и в нашем случае составляет примерно 1 В. Повысить напряжение срабатывания можно заменой диодов соответствующими стабилитронами и подбором резисторов R20 и R26 по надежному открыванию транзисторов VT4, VT7.

Поскольку напряжение на выходе блокированных стабилизаторов DA2 и DA4 не превышает 1,3 В, резисторы R21, R23, R24, диод VD20, стабилитрон VD21 и транзистор VT3 плюсового плеча, а также аналогичные элементы минусового плеча можно исключить, так как взаимной блокировки плеч не произойдет. Предусмотрены же эти элементы для случая, когда необходимо повысить (для минусового плеча - уменьшить) напряжение порога срабатывания защиты. При этом желательно предусмотреть отключение от него и питающего напряжения %10 В. Иначе невозможно установить выходное напряжение меньшее, чем значение порога срабатывания, поскольку блок защиты будет фиксировать замыкание в нагрузке и блокировать противоположное плечо. Блок питания будет работать и без системы защиты.

Его печатная плата выполнена из одностороннего фольгированного стеклотекстолита. Размещение деталей показано на рис. 3. Все постоянные резисторы - МЛТ, переменные R2.1 и R2.2 - сдвоенный резистор СП3-4аМ группы А, R10 и R17 - той же группы А, но одинарные. Оксидные конденсаторы С1, С2 и С5, С6 - К50-35, С4 и С8 - серии К53, C3 и С7 - любые керамические, например КМ-6. Диоды КД208А (VD1-VD8) заменимы на аналогичные серии КД226, а КД105А (VD12, VD18) - на любые из серий КД208, КД209, КД226, диоды VD13 и VD17 - любые маломощные кремниевые. Номинальное напряжение стабилизации стабилитронов VD10, VD11 и VD15, VD16 (Д818Е или серии КC190) можно выбрать в пределах 9...11 В с минимальным тепловым дрейфом.

Лабораторный источник постоянного напряжения и тока

Полевые транзисторы VT1 и VT2 (КП303 с буквенным индексом А, В, Ж или И) желательно отобрать по начальному току стока - в пределах 2...4 мА.

Сетевой трансформатор Т1, использованный в устройстве от разобранного блока питания зарубежного производства. Подойдет любой другой, в том числе самодельный, обеспечивающий на каждой из его вторичных обмоток переменное напряжение 17...18 В при токе нагрузки не менее 1,4 А.

Стабилитроны VD11 и VD15 расположены со стороны печатных проводников платы. Стабилизаторы DA2 и DA4 установлены на ребристые теплоотводы, которые винтами укреплены на печатной плате со стороны других деталей. Для лучшего теплового контакта стабилизаторы предварительно покрыты слоем теплопроводной пасты.

Налаживание основного блока устройства производится при отключенном блоке защиты и состоит в тщательной проверке монтажа и всех соединений и, если надо, подгонке напряжений, обеспечивающих работу микросхем, и настройке измерительного моста.

Сразу после подключения устройства к сети следует прежде всего измерить напряжение на фильтрующих конденсаторах С1, С2 и С5, С6, сглаживающих пульсации двуполярного выпрямителя, и стабилитронах VD9, VD14, обеспечивающих питанием ОУ DA1 и DA3. Напряжение на конденсаторах не должно превышать +25 В, а на стабилитронах - быть в пределах +9,5...10,5 В. При вращении валов резисторов R10 и R17 напряжения на соответствующих выходах плеч блока питания должны плавно изменяться от 1,25 до 18 В, а светодиоды HL1 и HL2 при этом не гореть. Максимальные значения этих напряжений устанавливают подборкой резисторов R8 и R18.

Функционирование измерительных мостов плеч устройства контролируют высокоомным вольтметром постоянного тока, подключая его к входным выводам ОУ DA1 и DA3. Напряжение на инверсном входе каждого из ОУ (относительно общего провода) должно быть отрицательнее напряжения на неинвертирующем входе. Разница в уровнях этих напряжений будет изменяться пропорционально сопротивлениям резисторов R2.1 и R2.2 "Ограничение Iвых". При равенстве напряжений устройство должно переключаться из режима источника напряжения в режим источника тока (или наоборот).

Начального значения ограничения тока нагрузки (0,01 А) добиваются подбором соответствующих резисторов (R3 и R13) измерительных мостов при положении вала переменного резистора R2 в положении минимального сопротивления.

Печатная плата блока защиты, размещение деталей на ней и подключение к плате блока питания изображены на рис. 4. Все резисторы - МЛТ-0,25. Транзистор VT3 - любой из серии К361, а VT6 - любой из серии КТ315. Коэффициент передачи тока базы транзисторов КТ3102Е (VT4, VT5) и КТ3107К (VT7, VT8) должен быть не менее 400.

Лабораторный источник постоянного напряжения и тока

Монтажные платы блока питания, скрепленные наподобие этажерки (рис. 5), и сетевой трансформатор размещены в корпусе с внутренними размерами 210x90x90 мм из пластин текстолита толщиной 5 мм.

Лабораторный источник постоянного напряжения и тока

Все элементы и органы управления блоком, а также гнезда-зажимы для подключения нагрузок и заземления вынесены на лицевую панель корпуса (рис. 6).

Лабораторный источник постоянного напряжения и тока

Там же находится и вольтметр постоянного тока (PV1 на рис. 7), позволяющий контролировать напряжение на выходе любого из плеч блока питания.

Лабораторный источник постоянного напряжения и тока

Мощность, рассеиваемая микросхемами DA2 и DA4, не должна превышать 10 Вт. Это ограничивает максимальный выходной ток источника значением 1,2 А при выходном напряжении более +15 В. При меньшем выходном напряжении падение напряжения на указанных микросхемах увеличивается, допустимый выходной ток уменьшается и при выходном напряжении 1,25 В составляет 10/(24-1,25)=0,44 А. Каждую пару стабилитронов VD10, VD11 и VD15, VD16 можно заменить на один стабилитрон на напряжение 10...15 В. Половину напряжения стабилитрона для подачи на неинвертирующие входы ОУ DA1 и DA3 при этом следует получить с помощью делителя из двух одинаковых резисторов сопротивлением 68 кОм, включенных так, как стабилитроны на схеме рис. 1. Применение термостабильных стабилитронов не оправдано, поскольку таковыми они являются лишь при рабочем токе 10 мА, а здесь ток через них значительно меньше.

При работе блока в режиме стабилизации напряжения при выходном напряжении 1,25 В закрывающее смещение на светодиодах HL1 и HL2 составляет около 20 В, что для них недопустимо. Поэтому последовательно с каждым из них следует включить любой маломощный кремниевый диод или просто не устанавливать резисторы R9 и R19. Стабилитроны VD21 и VD24 для надежного закрывания транзисторов VT3 и VT6 должны иметь гарантированно большее напряжение стабилизации, чем VD9 и VD14, поэтому лучше использовать их с индексами Г или Д. Для того чтобы транзисторы VT5 и VT8 не открывались обратными токами неосвещенных фотодиодов U1.2 и U2.2, их переходы база-эмиттер следует зашунтировать резисторами 510...680 кОм.

Литература

  1. Нефедов А., Головина В. Микросхемы КР142ЕН12. - Радио, 1993, № 8, с. 41, 42; 1994, № 1, с. 45.
  2. Нефедов А., Головина В. Микросхемы КР142ЕН18А, КР142ЕН18Б. - Радио, 1994, № 3, с. 41, 42.
  3. Хоровиц П., Хилл У. Искусство схемотехники, том 1. - М.: Мир, 1986.

Автор: А.Музыков, г.Пенза

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Смартфоны оглупляют 10.07.2017

Психологи из Техасского университета в Остине полагают, что смартфоны плохо влияют вообще на наши умственные способности.

Ученые поставили эксперимент, в котором нужно было выполнить несколько заданий, требующих большого умственного напряжения. Некоторых из участников эксперимента просили оставить свои смартфоны в соседней комнате, некоторым разрешали взять их с собой, но держать в карманах или сумках, наконец, третьим разрешали положить смартфон рядом на столе, экраном вниз. Все мобильные устройства должны были быть выключены.

Лучше всех тесты прошли те, кто оставил смартфоны в другой комнате; немногим хуже оказались результаты у тех, чьи гаджеты лежали в карманах и сумках; а вот те, у кого смартфоны лежали в поле зрения - те справились с заданием совсем плохо.

Для другого эксперимента авторы работы попросили добровольцев самих описать собственную зависимость от мобильных гаджетов, после чего им предложили пройти те же тесты с теми же условиями: смартфон в соседней комнате, смартфон в кармане, смартфон перед глазами.

Сильно смартфонозависимые люди справлялись с заданием заметно хуже, чем те, кто спокойно относился к своему гаджету, однако разница проявлялась опять же лишь в том случае, если смартфон был в поле зрения; если же его прятали, то зависимость от смартфона на результаты тестов не влияла.

Другие интересные новости:

▪ Преобразователи уровня Texas Instruments SN74AXC

▪ Нейтрино трансформировали

▪ Маршрутизатор Netgear R6250, 802.11ac (5G Wi-Fi)

▪ Биоразлагаемый пластик из хлопковых отходов

▪ Драйверы светодиодов мощностью 12 Вт от компании TDK-Lambda

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта ВЧ усилители мощности. Подборка статей

▪ статья Со всех сторон его клянут, и, только труп его увидя, как много сделал он, поймут, и как любил он, ненавидя! Крылатое выражение

▪ статья Чем отличаются друг от друга брокер, дилер, маклер? Подробный ответ

▪ статья Производственный мастер. Должностная инструкция

▪ статья Микропередатчик со стабилизацией тока. Энциклопедия радиоэлектроники и электротехники

▪ статья Материалы для изготовления антенн. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026