Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

Автор анализирует наиболее характерные особенности и недостатки стабилизаторов напряжения, знакомых радиолюбителям по публикациям в нашем журнале, дает практические советы, подчас нетрадиционные, по улучшению их основных параметров. В качестве примера он рассказывает о разработанном им стабилизаторе, предназначаемым для мощных блоков питания аппаратуры, которая работает круглосуточно. В статье описывается технология изготовления теплоотвода мощного транзистора.

Сетевые блоки питания, в которых для стабилизации выпрямленного напряжения радиолюбители используют микросхемные стабилизаторы, не всегда радуют их создателей. Причина тому - характерные присущие этим конструкциям недостатки.

У традиционных транзисторных стабилизаторов нередко ненадежна защита от перегрузки. Безынерционные системы защиты ложно срабатывают даже от кратковременных перегрузок при подключении емкостной нагрузки. Инерционные же средства защиты не успевают сработать при сильном импульсе тока, например, при коротком замыкании, приводящем к пробою транзисторов [1]. Устройства с ограничителем выходного тока - безынерционны, в них отсутствует триггерный эффект, но при коротком замыкании на регулирующем транзисторе рассеивается большая мощность, что требует применения соответствующего теплоотвода [2].

Единственный выход при такой ситуации - одновременное применение средств ограничения выходного тока и инерционной защиты регулирующего транзистора от перегрузки, что обеспечит ему в два-три раза меньшую мощность и габариты те плоотвода. Но это приводит к увеличению числа элементов, габаритов конструкции и усложняет повторяемость устройства в любительских условиях.

Принципиальная схема стабилизатора, число элементов в котором минимально, приведена на рис. 1.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Источником образцового напряжения служит термостабилизированный стабилитрон VD1. Для исключения влияния входного напряжения стабилизатора на режим стабилитрона его ток задается генератором стабильного тока (ГСТ), построенным на полевом транзисторе VT1. Термостабилизация и стабилизация тока стабилитрона повышают коэффициент стабилизации выходного напряжения.

Образцовое напряжение поступает на левый (по схеме) вход дифференциального усилителя на транзисторах VT2.2 и VT2.3 микросборки К125НТ1 и резисторе R7, где сравнивается с напряжением обратной связи, снимаемым с делителя выходного напряжения R8R9. Разность напряжений на входах дифференциального усилителя изменяет баланс коллекторных токов его транзисторов.

Регулирующий транзистор VT4, управляемый коллекторным током транзистора VT2.2, обладает большим коэффициентом передачи тока базы. Это увеличивает глубину ООС и повышает коэффициент стабилизации устройства, а также уменьшает мощность, рассеиваемую транзисторами дифференциального усилителя.

Рассмотрим работу устройства более подробно.

Допустим, что в установившемся режиме при увеличении тока нагрузки выходное напряжение несколько уменьшится, что вызовет и уменьшение напряжения на эмиттерном переходе транзистора VT3.2. При этом ток коллектора также уменьшится. Это приведет к увеличению тока транзистора VT2.2, поскольку сумма выходных токов транзисторов дифференциального усилителя равна току, текущему через резистор R7, и практически не зависит от режима работы его транзисторов.

В свою очередь, растущий ток транзистора VT2.2 вызывает увеличение тока коллектора регулирующего транзистора VT4, пропорциональное его коэффициенту передачи тока базы, повышая выходное напряжение до первоначального уровня и позволяет поддерживать его неизменным независимо оттока нагрузки.

Для кратковременной защиты устройства с возвратом его в исходное состояние введен ограничитель тока коллектора регулирующего транзистора, выполненный на транзисторе VT3 и резисторах R1, R2.

Резистор R1 выполняет функцию датчика тока, протекающего через регулирующий транзистор VT4. В случае превышения тока этого транзистора максимального значения (около 0,5 А) падение напряжения на резисторе R1 достигнет 0,6 В, т. е. порогового напряжения открывания транзистора VT3. Открываясь, он шунтирует эмиттерный переход регулирующего транзистора, тем самым ограничивая его ток примерно до 0,5 А.

Таким образом, при кратковременных превышениях током нагрузки максимального значения транзисторы VT3 и VT4 работают в режиме ГСТ, что вызывает падение выходного напряжения без срабатывания защиты от перегрузки по току. Через некоторое время, пропорциональное постоянной времени цепи R5C1, это приводит к открыванию транзистора VT2.1 и дальнейшему открыванию транзистора VT3, закрывающего транзистор VT4. Такое состояние транзисторов устойчивое, поэтому после устранения короткого замыкания или обесточивания нагрузки необходимо отключить устройство от сети и вновь включить после разрядки конденсатора С1.

Ток короткого замыкания устройства равен нулю, а значит, исключает перегрев регулирующего транзистора при срабатывании защиты. Резистор R3 необходим для надежной работы транзистора VT4 при малых токах и повышенной температуре. Конденсатор С2, шунтирующий выход стабилизатора, предотвращает самовозбуждение устройства, причиной которого может стать глубокая ООС по напряжению.

Резистор R6 в коллекторной цепи транзистора VT2.1 ограничивает ток во время переходных процессов при включении защиты, а светодиод HL1 выполняет функцию индикатора перегрузки.

Основные параметры стабилизатора

  • Входное напряжение, В......14...20
  • Выходное напряжение, В......12
  • Ток нагрузки, А......0...0.5
  • Изменение выходного напряжения при токе нагрузки от 0 до 0,5 А, В......<0,1
  • Ток покоя, мА......15
  • Ток короткого замыкания, мА......<0,1

Стабилизатор некритичен к разводке печатной платы и размещению деталей на ней. Поэтому монтаж его зависит главным образом от опыта самого конструктора и габаритов предварительно подобранных деталей.

Полевой транзистор VT1 следует подобрать таким, чтобы ток стабилизации, измеренный по схеме рис. 2,а или 2,б, был в пределах 5...15 мА. Статический коэффициент передачи тока базы транзистора VT3 должен быть не менее 20, а транзистора VT4 - не менее 400. На регулирующем транзисторе VT4, допустимый ток коллектора которого должен быть не менее 1 А, выделяется значительная мощность, поэтому его следует установить на теплоотвод мощностью около 5 Вт.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Резисторы и конденсаторы - любых типов на номиналы, указанные на схеме.

Приступая к испытанию и налаживанию стабилизатора, резистор R5 временно удаляют, чтобы система защиты не срабатывала, и подбором резистора R8 устанавливают выходное напряжение, равное 12 В. После этого включают резистор R5 и подбором резистора R1 добиваются необходимого значения тока срабатывания защиты устройства по току.

Какие изменения или дополнения можно внести в рекомендуемый стабилизатор?

Если у радиолюбителя не окажется подходящего полевого транзистора, генератор постоянного тока можно собрать на биполярном транзисторе КТ3108А (рис. 3,а) или аналогичном ему из серии КТ361 с коэффициентом передачи тока базы не менее 20. Диоды VD3 и VD4 могут быть любые кремниевые.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Термостабилизированный стабилитрон Д818В (VD1) заменим на любой другой аналогичный на напряжение стабилизации от 3 до 12 В. Но наиболее желателен двуханодный стабилитрон, например КС162А, с малым температурным коэффициентом напряжения стабилизации. В крайнем случае его заменит цепочка из последовательно соединенных обычного стабилитрона и любого кремниевого диода, как показано на рис. 3,б.

Регулирующий транзистор КТ825А (VT4) можно заменить на два, включив их по схеме составного транзистора, как показано на рис. 4,а или 4,б. Транзистор VT4' должен быть с коэффициентом усиления по току не менее 20, максимальным током коллектора не менее 1 А и максимальной рассеиваемой мощностью с теплоотводом не менее 5 Вт. Транзистор VT4" - любой структуры р-n-р с коэффициентом усиления по току не менее 20, максимальным током коллектора не менее 30 мА и максимальной рассеиваемой мощностью не менее 150 мВт, например, серий КТ361, КТ203, КТ208, КТ209, КТ501, КТ502.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Для уменьшения напряжения насыщения транзистора VT4" и, как следствие, некоторого уменьшения рассеиваемой мощности составной транзистор целесообразно выполнить по схеме рис. 4,в. При этом мощность, рассеиваемая транзистором VT4", увеличится до 0,6 Вт. Подойдут транзисторы серий КТ814, КТ816, ГТ402 или другие с аналогичными параметрами.

Транзисторы VT2.2 и VT2.3 микросборки К125НТ1, работающие в дифференциальном каскаде, можно заменить на сборку из двух п-p-n транзисторов с коэффициентом усиления по току не менее 20, максимальным напряжением коллектор-эмиттер не менее 20 В и током коллектора не менее 15 мА, например, серии КР198. При этом важно лишь помнить: одинаковые вольт-амперные характеристики обоих транзисторов дифференциального каскада необходимы для обеспечения равенства напряжения, снимаемого с делителя R8R9, - образцовому, что гарантирует независимость выходного напряжения стабилизатора от тока нагрузки. Если такое равенство не требуется, тогда эти элементы микросборки можно заменить любыми маломощными п-p-n транзисторами с аналогичными параметрами. В этом случае, а также если микросборка состоит всего из двух элементов, функцию транзистора VT2.1 может выполнять аналогичный n-р-n транзистор малой мощности.

Описанный стабилизатор с фиксированным выходным напряжением несложно преобразовать в двуполярный с регулируемым выходным напряжением от ±6 В до ±12 В. Схема такого устройства приведена на рис. 5.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Пределы напряжения стабилизации возможно расширить заменой стабилитрона КС162А (VD1) на КС147А и уменьшением сопротивления резистора R9 до 330 Ом. Допустимо также дифференциальный усилитель и делитель напряжения R8R9 смонтировать по схеме рис. 6.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Тогда выходное напряжение стабилизатора можно будет изменять от 0 до ±12 В. Однако система защиты, в которую входят элементы VT2.1, R5, С1, HL1 (рис. 1) в этом случае потеряет смысл и стабилизатор станет довольно традиционным.

Транзисторы VT1, VT2 и VT4, номиналы резисторов и конденсаторов такие же, как в стабилизаторе по схеме рис. 1, но мощность рассеяния транзистора VT4 (или транзисторов VT4', VT4" по схемам рис. 4) возрастет пропорционально падению напряжения на нем.

Теплоотводы мощных транзисторов серий КТ825 или КТ827, выполняющих функцию регулирующих, могут быть самодельными. Возможная конструкция одного из таких теплоотводов показана на рис. 7,а. Заготовку для него (рис. 7,б) вырезают ножницами по металлу или выпиливают лобзиком из листового алюминия толщиной 2 мм. Затем узкие лепестки противоположных сторон заготовки поворачивают пассатижами на 90° вокруг собственной оси каждый, а широкие загибают (по штриховым линиям) вверх.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току, 14-20/12 вольт 0,5 ампер

Литература

  1. Мансуров М. Лабораторный блок питания с триггерной защитой. - Радио, 1990, № 4, с. 66-70.
  2. Нечаев И. Комбинированный лабораторный блок. - Радио, 1991, №6, с. 61-63.

Автор: В.Козлов, г.Муром Владимирской обл.

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Фоновая музыка мешает творчеству 19.03.2021

Фоновая музыка, вопреки распространенному мнению, не улучшает, а ухудшает творческие способности человека.

К такому выводу пришли исследователи из Швеции и Великобритании. Они предлагали участникам исследования выполнить ряд заданий со словами, требующих творческого подхода. Как оказалось, фоновая музыка значительно ухудшала вербальные способности людей.

При этом не имело значения, нравилась ли музыка участникам и какие жанры они слушали.

В то же время ученые выяснили, что в библиотеке, где тоже присутствует фоновый шум, участники эксперимента справились с творческими заданиями так же хорошо, как и в полной тишине.

Известный психолог Джон Марш утверждает, что это можно объяснить тем фактом, что фоновый шум в библиотеке стабилен и не меняется, а это означает, что он не сильно мешает.

Другие интересные новости:

▪ Измерено время существования свободного нейтрона

▪ Курица на растительной основе от KFC

▪ Учиться вне стен школы полезнее

▪ Кроссовки меняют физиологию бега

▪ Умный гидрогель для трехмерной печати

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Веселые задачки. Подборка статей

▪ статья Ядерный реактор на быстрых нейтронах. История изобретения и производства

▪ статья Как английская разведка обманула Гитлера, чтобы союзники без помех захватили Сицилию? Подробный ответ

▪ статья Куркума домашняя. Легенды, выращивание, способы применения

▪ статья Измеритель влажности с емкостным датчиком. Энциклопедия радиоэлектроники и электротехники

▪ статья Манипуляция - основа иллюзионного искусства. Подготовительная работа над фокусами. Тренаж. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025