Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Автоматическое зарядное устройство. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Для продления срока службы батареи никель-кадмиевых или никель-металлгидридных аккумуляторов рекомендуют перед каждой зарядкой разрядить батарею. Делать это без специального устройства неудобно, а пренебрежение разрядкой может привести к появлению эффекта "памяти". Описываемое ниже зарядное устройство автоматически выполняет и разрядную, и зарядную функции.

Зарядное устройство предназначено для зарядки аккумуляторных батарей, состоящих из 7-10 герметичных щелочных аккумуляторов в режиме, близком к указанному на этикетке батареи.

Завод-изготовитель гарантирует ресурс аккумулятора (число циклов зарядка-разрядка) и сохранение его номинальной емкости при соблюдении следующих условий эксплуатации: разрядка до конечного напряжения не менее 1 В и зарядка током, равным одной десятой от номинальной емкости в ампер-часах в течение 15 ч. В предлагаемом устройстве разрядка производится до конечного напряжения, соответствующего 1,05 В на каждый аккумулятор батареи. Зарядный ток равен 0,8 номинального, время зарядки - около 17 ч, емкость заряжаемых аккумуляторов - от 0,1 до 1 А-ч.

Схема устройства показана на рисунке. Эксплуатировать устройство очень просто - достаточно подключить батарею к зажимам Х1, Х2 включить тумблер SA1 "Сеть" и нажать на кнопку SB1 "Пуск". При прекращении электроснабжения устройство переходит в ждущий режим и при появлении напряжения в сети процесс продолжается

Автоматическое зарядное устройство
(нажмите для увеличения)

Разрядку аккумуляторной батареи производит генератор стабильного тока до конечного напряжения, при котором ЭДС на наиболее "слабом" аккумуляторе понизится до 1,05 В. При достижении конечного напряжения генератор стабильного тока подключается последовательно с батареей к источнику питания, обеспечивая ток зарядки. Одновременно запускается таймер, который при прошествии 17 ч 4 мин прекращает зарядку.

Зарядное устройство питается от сети переменного тока 220 В. Блок питания представляет собой двуполупериодный выпрямитель VD1 с гасящими конденсаторами С1, С2, C3 и токоограничительным резистором R1. Сглаженное конденсаторами С4 и С5 напряжение поступает на последовательно соединенные стабилитроны VD2 и VD4 с напряжением стабилизации 10 В. Первое напряжение используется для питания основной части устройства, а второе - для питания генератора тока в режиме зарядки аккумуляторной батареи.

Генератор тока - параметрический. Он собран на транзисторах VT5, VT6, светодиоде HL2 и резисторах R17, R18. Транзистор VT5 задает ток через светодиод HL2, который помимо индикации тока через батарею выполняет функцию низковольтного стабистора. Транзистор VT6 включен по схеме эмиттерного повторителя. Необходимый ток устанавливают подстроечным резистором R17.

После срабатывания реле К1 и К2 генератор тока подключен параллельно аккумуляторной батарее и разряжает ее, а при обесточивании обмоток реле генератор тока подключается последовательно с батареей к источнику питания - она заряжается.

Микросхема DD2 работает одновременно кварцевым генератором на частоте 32768 Гц и делителем частоты. На выходе S2 микросхемы частота равна 2 Гц, на выходе М - 1/60 Гц.

Устройство работает следующим образом. Подключают аккумуляторную батарею к контактам Х1 и Х2. Включают тумблер SA1, и нажимают на кнопку SB 1 "Пуск". При замыкании правых по схеме контактов кнопки напряжение поступает на цепь C13R21 и далее на вход R триггера DD3.2. На его инверсном выходе возникает высокий уровень. Также высокий уровень через диод VD6 поступает на цепь C8R6 и вход R счетчика DD1, переводя его в нулевое состояние.

При замыкании левой по схеме группы контактов кнопки SB1 через обмотки реле К1 и К2 протекает ток, реле срабатывают (замыкаются контакты 2 и 3) и подключают генератор тока параллельно аккумуляторной батарее. Начинается процесс разрядки батареи, о чем свидетельствует свечение светодиода HL3 Значение напряжения на движке резистора R15 больше необходимого для прямого смещения эмиттерного перехода транзистора VT4 и светодиода HL4, используемого в качестве низковольтного стабистора. Транзистор VT4 открыт, на его коллекторе и входе D триггера DD3.1 низкий уровень.

Тактовые импульсы с частотой 2 Гц поступают на вход С триггера DD3.1 и переводят его в состояние, при котором на прямом выходе низкий уровень, а на инверсном - высокий. Этот высокий уровень через диод VD7 приходит на вход R счетчика DD1 и на базу составного транзистора VT7VT8, открывая его. Ток через открытые транзисторы и обмотки реле К1 К2 удерживает контакты этих реле в сработавшем состоянии, при котором генератор тока включен параллельно аккумуляторной батарее и разряжает ее.

По мере разрядки батареи напряжение на движке резистора R15 становится недостаточным для поддержания открытым транзистора VT4 Он закрывается, и на его коллекторе и входе D триггера DD3.1 возникает высокий уровень. С приходом очередного тактового импульса на вход С триггера DD3.1 на его инверсном выходе появляется низкий уровень, а на прямом - высокий. Составной транзистор VT7VT8 закрывается, обмотки реле К1 и К2 обесточиваются, их контакты возвращаются в положение, при котором генератор тока подключен последовательно с батареей к источнику питания 25 В на зарядку.

Одновременно низкий уровень появляется на входе R счетчика DD1, и он начинает подсчитывать импульсы с частотой 1/60 Гц, приходящие на его вход С с выхода М счетчика DD2. Высокий уровень с прямого выхода триггера DD3.1 поступает на вход S триггера DD3.2, при этом напряжение на его инверсном выходе становится равным нулю, диод VD10 открывается и поступление импульсов на вход С триггера DD3.1 прекращается.

Коэффициент пересчета счетчика DD1 равен 1024, входная частота - 1/60 Гц (один импульс в минуту). При поступлении 1024-го импульса (через 17 ч 4 мин) на выходе 2 счетчика DD1 появляется высокий уровень, который открывает транзисторы VT2 и VT3. Составной транзистор VT3 шунтирует источник питания, и процесс зарядки прекращается. Однако обесточивается не все устройство. Ток от заряженной батареи, равный 30 мкА начинает протекать через диод VD5, резистор R2 и обратно включенный эмиттерный переход транзистора VT1, выполняющего функцию слаботочного стабилитрона с напряжением стабилизации 6,3 В. Это напряжение питает микросхемы DD1, DD3 и удерживает их в состоянии, в котором они находились в момент шунтирования источника питания. Возможность хранения информации при отсутствии сетевого напряжения позволяет допускать перерывы в процессе разрядки-зарядки из-за отсутствия напряжения в питающей сети.

Диод VD11 предназначен для защиты зарядного устройства - при подключении аккумуляторной батареи в неверной полярности диод VD11 открывается и предохранитель FU2 перегорает.

В устройстве применены конденсаторы МБГЧ (C1- C3) на напряжение 500 В. Реле К1 и К2 - герконовые РЭС55А с паспортом РС4.569.600-02. Резистор R1 - С5-42В, R15, R17 - СПЗ-19а.

Стабилитроны VD2, VD4 и транзистор VT6 размещены на дюралюминиевых теплоотводах площадью 20 см2 каждый. Компактно собранная монтажная плата устройства размещена в металлической коробке, которая защищает его от мощных электромагнитных и электростатических полей, способных вызвать ложное срабатывание.

Так как устройство имеет бестрансформаторное питание от сети, следует соблюдать осторожность при налаживании и эксплуатации. На время налаживания желательно подключать устройство к сети через разделительный трансформатор. Налаживание устройства заключается в установлении необходимого тока зарядки и разрядки и определения момента переключения устройства из режима разрядки в режим зарядки.

Сначала устанавливают движок резистора R17 в крайнее нижнее по схеме положение, a R15 - в крайнее верхнее. Подключают не полностью разряженную аккумуляторную батарею к контактам XI, Х2 через миллиамперметр и включают устройство в сеть. Нажимают на кнопку "Пуск" - батарея начинает разряжаться через генератор тока. Требуемый разрядный ток устанавливают вращением движка резистора R17. Отключают миллиамперметр, подключают батарею непосредственно к контактам X1, Х2 и нажимают на кнопку "Пуск" - разрядка продолжается. Периодически контролируют напряжение на каждом аккумуляторе батареи. При достижении значения 1,05 В на каком-либо из них разрядку прекращают плавным вращением движка резистора R15 вниз по схеме. При этом устройство переключается в режим зарядки, светодиод HL3 гаснет.

Выход устройства гальванически связан с сетью, вследствие чего подключать или отключать аккумуляторную батарею можно лишь в выключенном положении тумблера SA1.

Автор: Ш.Гизатуллин, г.Томск

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Инновационная концепция орбитального жилья от Airbus 04.05.2023

Европейский аэрокосмический гигант Airbus представил свою уникальную концепцию жилья, которое позволит астронавтам более комфортно проводить время за счет большей, чем у современных орбитальных станций, площади кабины. Орбитальный модуль, получивший название LOOP, состоит из трех конструктивно независимых палуб, соединенных между собой специальным тоннелем.

Вокруг станция оцеплена высокотехнологичной теплицей для выращивания продуктов непосредственно на орбите. На сайте компании говорится, что LOOP приспособлен для комфортного размещения четырех пассажиров. Однако при необходимости станцию &#8203;&#8203;можно переоборудовать и для восьми членов экипажа.

LOOP шириной восемь метров и может вписаться в обтекатель будущего поколения сверхтяжелых ракетоносителей, таких как Starship компании SpaceX. Таким образом, станция Airbus может быть развернута непосредственно после запуска и использована для проживания астронавтов в ходе выполнения своей миссии.

В отсеках корабля есть как жилые помещения, так и боксы, необходимые для проведения научных исследований. В частности, есть лаборатория и центрифуга для создания искусственной гравитации. Концептуальное космическое жилье, по словам разработчиков Airbus, может быть готово к полетам в начале 2030-х годов.

Другие интересные новости:

▪ Система двунаправленной зарядки электромобилей от Honda

▪ Полезная и эффективная замена утреннему кофе

▪ Нанотехнология на стекле

▪ 3D-принтер керамической посуды

▪ Самый мощный в мире лазер

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Параметры радиодеталей. Подборка статей

▪ статья Шполянский Аминадав Пейсахович (Дон-Амидано). Знаменитые афоризмы

▪ статья Как был открыт световой год? Подробный ответ

▪ статья Работа по сливу-наливу вязких нефтепродуктов. Типовая инструкция по охране труда

▪ статья Силовые модули. Энциклопедия радиоэлектроники и электротехники

▪ статья Нормы испытаний электрооборудования и аппаратов электроустановок потребителей. Усредненные распределения напряжений по подвесным фарфоровым изоляторам гирлянд ВЛ 35 - 220 кВ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025