Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сравнительные характеристики гальванических элементов типоразмера АА. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Сегодня в магазинах и на рынках можно встретить множество различных гальванических элементов. Какие выбрать? Предлагаемая статья поможет принять правильное решение.

Для питания различной радиоэлектронной аппаратуры широко применяют гальванические элементы и батареи. Наибольшее распространение получили элементы типоразмера АА. На торговых прилавках можно встретить подобные изделия разных фирм в основном двух электрохимических систем: солевые и щелочные. Совсем недавно фирма Energizer начала выпуск литиевых гальванических элементов типоразмера АА напряжением 1,5 В.

Важнейшая характеристика гальванического элемента - емкость (количество электричества, которое он способен отдать в нагрузку) - почти никогда не указана на этикетке. Покупателю остается ориентироваться на телевизионные рекламные ролики об элементах, которые "работают до десяти раз дольше обычных солевых", или поверить на слово фирме Energizer, утверждающей, что ее новые литиевые элементы е2 типоразмера АА работают в пять раз дольше обычных щелочных [1]. Причем остается не вполне понятным, какие именно элементы названы "обычными".

Чтобы количественно сравнить параметры элементов разных электрохимических систем, необходимо испытать их в одинаковых условиях. Такие испытания были проведены с элементами трех типов: солевым Philips Long Life (ЭДС "свежего" элемента - 1,65 В), щелочным Duracell Ultra МЗ (1,62 В) и литиевым Energizer е2 (1,8 В). Каждый из них был нагружен резистором номиналом 15 Ом, что соответствует начальному току разрядки приблизительно 100 мА. Для элементов типоразмера АА такой ток нагрузки - типовой. Разрядка проводилась циклами по несколько часов в сутки, что соответствует реальным условиям эксплуатации. Этим объясняются "выбросы" напряжения на разрядных кривых, показанных на рис. 1. Кривая синего цвета соответствует солевому элементу, красного - щелочному и зеленого - литиевому. За время "отдыха" напряжение на элементе любого типа немного возрастало, но после подключения нагрузки оно быстро снижалось до минимального в предыдущем цикле. Точками отмечены значения ЭДС элементов - напряжения на них без нагрузки.

Сравнительные характеристики гальванических элементов типоразмера АА

Если принять в качестве критерия полной разрядки элемента уменьшение напряжения на его нагрузке до 0,9 В, экспериментально определенная емкость солевого элемента составила 1 Ач, щелочного - 2,9 Ач, а литиевого - 3,5 Ач. Следовательно, ни о каких пяти- и десятикратных отличиях в емкости элементов разных электрохимических систем говорить не приходится.

На рис. 2 приведена еще одна серия кривых.

Сравнительные характеристики гальванических элементов типоразмера АА

Они показывают, как изменялось внутреннее сопротивление элементов в процессе разрядки. Соответствие между типом элемента и цветом кривой здесь такое же, как на рис. 1. Значения внутреннего сопротивления R, были вычислены по формуле

где Е - ЭДС элемента; U - напряжение под нагрузкой; RH - сопротивление нагрузки.

Внутреннее сопротивление солевого и щелочного элементов по мере разрядки монотонно возрастает. А сопротивление литиевого, резко уменьшившись в начале разрядки, до самого ее конца остается практически неизменным, а затем столь же резко увеличивается.

Конечно, проведенные эксперименты нельзя назвать исчерпывающими. Емкость элемента не строго фиксированная величина, она зависит от многих внешних факторов. У разных элементов ее максимум может достигаться при существенно различающихся условиях разрядки. Чтобы учесть все это, пришлось бы провести очень большую, нереальную в любительских условиях серию экспериментов.

Однако попробуем проверить полученные результаты расчетом. Чтобы оценить теоретически максимально возможную емкость элементов различных электрохимических систем, нужно знать химический состав их электродов, электролита и происходящую в элементе химическую реакцию. У солевых и щелочных элементов катод - цинк, анод - двуокись марганца. Именно по этой причине такие элементы обобщенно называют марганцево-цинковыми. Но электролит в них разный: соль (обычно хлорид аммония) или щелочь (гидроксид калия). По данным [2] в солевом марганцево-цинковом элементе происходит реакция

а в щелочном

О материале электродов и химической реакции в литиевом элементе нет достоверных сведений. Можно лишь предположить, что электроды - литий и двуокись марганца, а электролит - раствор перхлората лития в пропилен-карбонате. Если эта догадка верна, согласно [2] в литиевом элементе идет реакция

Используя закон Фарадея, получим выражение для определения емкости гальванического элемента С, Ач:

где m - масса реагирующих веществ F = 96,5-103 Кл/г-экв - число Фарадея; n - валентность (для солевого и щелочного гальванических элементов - 2, для литиевого - 1); М - суммарная молекулярная масса реагирующих веществ.

Взвешиваем гальванические элементы типоразмера АА: солевой - 17 г, щелочной - 24 г, литиевый - 15 г Предположим, что по сравнению с массой реагирующих веществ масса корпуса элемента и веществ, не принимающих участия в реакции (угольный электрод, электролит в щелочном и литиевом элементах), ничтожно мала и ею можно пренебречь.

Суммарную молекулярную массу реагирующих веществ вычислим из приведенных выше уравнений химических реакций: у солевого - 346 г, у щелочного - 257 г, у литиевого - 94 г. Подставляя в формулу числовые значения, получим максимально возможную емкость солевого элемента - 2,6 А-ч, щелочного - 5 А-ч, литиевого - 4,3 Ач. Отличия рассчитанных значений емкости от измеренных можно объяснить довольно грубыми допущениями, принятыми при расчете.

Так что пяти- и десятикратных отличий не обнаружено. Теоретическая емкость щелочного элемента примерно вдвое больше емкости солевого, а литиевый не имеет в этом отношении никакого преимущества перед щелочным. Это соответствует результатам эксперимента. По итогам всей проделанной работы можно заключить следующее:

1. Литиевые гальванические элементы обладают наиболее стабильным напряжением, наименьшим внутренним сопротивлением, которое практически не зависит от степени разряженности, и наибольшей, хотя и не намного, емкостью. Их предпочтительнее применять для питания аппаратуры с большим потребляемым током, а также в устройствах, которые автоматически отключаются при снижении напряжения источника питания (например, цифровые фотоаппараты).

2. Щелочные элементы имеют емкость, сравнимую с емкостью литиевых, и также способны отдавать в нагрузку большой ток, однако при меньшем напряжении. Их лучше применять в устройствах со средним током потребления без автоматического контроля напряжения. Во многих случаях щелочные элементы предпочтительнее литиевых, поскольку они в три-четыре раза дешевле.

3. Солевые элементы имеют наименьшую емкость и наибольшее внутреннее сопротивление. Их целесообразно применять в аппаратуре с малым потребляемым током.

Литература

  1. Energizer. Battery Products. - < energizer-eu.com/en/e2_lithium/ defeult.htm>.
  2. Загорский В. Лекции по общей и неорганической химии. Лекция 5. - < chem.msu.su/rus/teaching/general/ lection5.html#3>.

Автор: И.Подушкин, г.Москва

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Транзистор, заменяющий целые логические схемы 26.12.2021

Ученые сделали шаг в интересном направлении в производстве полупроводников - они разработали динамически программируемый транзистор, который один может реализовать такую многокомпонентную логику, как NOR, NAND и другую. Предложенный транзистор легко ложится на существующую инфраструктуру производства и не использует экзотические материалы. Особенный выигрыш от его использования ожидается в сфере искусственного интеллекта.

Обычный транзистор состоит из двух электродов для токопроводящего канала и еще одного электрода для управления каналом (затвором). Управление затвором позволяет пропускать ток через транзистор или запирать его. На этом принципе базируется практически вся современная цифровая электроника. Исследователи из Венского технического университета (TU Wien) предложили добавить в структуру транзистора два дополнительных электрода и соединить их тончайшей нитью из чистого германия (Ge). И это принесло успех.

Благодаря своим электронным свойствам германий демонстрирует эффект отрицательного дифференциального сопротивления. Это означает, что по мере увеличения напряжения на определенном участке ток перестает увеличиваться и образуется провал. Чем большее напряжение мы подаем на таком отрезке вольтамперной характеристики, тем меньше ток, что также можно использовать для переключения прибора (сигнала).

Этот дополнительный металл-германиевый переход (в качестве металлических электродов использован алюминий) позволяет программировать транзистор на заданные пороговые напряжения переключения состояний. Подчеркнем, этот порог можно динамически устанавливать на заданном уровне - это фактически программирование транзистора на ряд последовательных логических операций вместо простого "включено" или "выключено".

"До сих пор интеллект электроники возникал просто благодаря соединению нескольких транзисторов, каждый из которых обладал лишь довольно примитивной функциональностью. В будущем этот интеллект может быть перенесен на адаптивность самого нового транзистора, - сказал профессор Вальтер Вебер (Walter M. Weber). - Арифметические операции, для которых ранее требовалось 160 транзисторов, благодаря этой повышенной адаптивности станут возможны с 24 транзисторами. Таким образом, скорость и энергоэффективность схем также могут быть значительно увеличены".

Другие интересные новости:

▪ Новая Nokia 3310 с поддержкой 4G

▪ Для диагностики достаточно одной капли крови

▪ Молекулярная мышца из гидрогеля сокращается на свету

▪ Microsoft станет беднее

▪ CC3235S - первый IoT WiFi-chip TI c поддержкой диапазона 5 ГГц

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Зоны действия негативных факторов. Основы безопасной жизнедеятельности

▪ статья Что такое язык идиш? Подробный ответ

▪ статья Раувольфия змеиная. Легенды, выращивание, способы применения

▪ статья Гибридный УМЗЧ без ООС. Энциклопедия радиоэлектроники и электротехники

▪ статья Транзисторы ICM7555ISA - IRF4905S. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Толковая статья, благодарю.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025