Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Полумостовой инвертор в зарядном устройстве. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Разработка импульсных питающих устройств на основе инверторов позволяет создавать недорогие зарядные устройства с небольшим весом и габаритами. Двухтактные импульсные преобразователи критичны к несимметричному намагничиванию магнитопровода и возникновению сквозных токов. В полумостовом же инверторе с насыщающимся трансформатором отсутствует постоянная составляющая тока первичной обмотки, а напряжение на закрытых транзисторах не превышает напряжения сети.

В схеме инвертора происходит тройное преобразование:

  • выпрямление напряжения сети, т.е. получение постоянного высокого напряжения;
  • преобразование постоянного высокого напряжения в импульсное
  • высокочастотное и его трансформация в низковольтное;
  • преобразование высокочастотного напряжения в постоянное низковольтное, т.е. его выпрямление и стабилизация.

Предлагаемое устройство (рис.1) предназначено для зарядки автомобильных и других мощных аккумуляторов.

Полумостовой инвертор в зарядном устройстве
(нажмите для увеличения)

Генератор прямоугольных импульсов выполнен на аналоговом интегральном таймере DA1 серии 555 Внутренняя структура таймера содержит два компаратора, входы которых соединены с выводами 2 и 6, RS-триггер с входом (выводом 4) сброса в нулевое состояние, выходной усилитель для повышения нагрузочной способности, ключевой транзистор с коллектором, подключенным к выводу 7, вход управления (вывод 5 от делителя напряжения питания).

Для работы микросхемы в режиме автогенератора входы 2 и 6 внутренних компараторов DA1 соединены вместе. Заряд внешнего конденсатора С1 продолжается при повышении напряжения на нем до уровня 2/3 Uпит, а высокий уровень на выходе 3 DA1 при этом сменяется низким.

При падении напряжения на конденсаторе С1 до уровня 1/3 Uпит за счет разряда через внутренний транзистор микросхемы на выходе 3 DA1 вновь устанавливается высокий уровень.

Процессы заряда и разряда времязадающего конденсатора С1 происходят циклически. Заряд С1 происходит через диод VD1, R2 и включенную (левую по схеме) часть переменного резистора R1, разряд - через VD2, R2, R4 и правую часть R1. Такая схема позволяет с помощью R1 регулировать скважность импульсов (отношение длительности к периоду). Частота генератора при этом остается постоянной, а изменяется ширина (длительность) импульсов. За счет этого устанавливается нужное выходное напряжение на клеммах. ХТ1, ХТ2. Светодиодный индикатор HL1 позволяет визуально контролировать наличие высокого уровня на выходе 3 DA1.

Импульс положительной полярности с выхода 3 DA1 через ограничительный резистор R4 поступает на базу транзистора VT1 и открывает его. В результате, транзисторы VT2 и VT3 переключаются в противоположные состояния проводимости (VT2закрывается, а VT3 открывается). По окончании импульса и смене высокого уровня на выводе 3 DA1 на нулевой VT1закрывается, соответственно, закрывается VT3 и открывается VT2.

В точке соединения эмиттера VT2 и коллектора VT3 (на первичной обмотке импульсного трансформатора Т1) формируется прямоугольный импульс.

Резисторы R11, R12 и форсирующие конденсаторы С4, С5 в базовых цепях транзисторов VT2, VT3 снижают сквозной ток и выводят транзисторы из насыщения в момент переключения, уменьшая потери в цепях управления и нагрев транзисторов. Для открывания транзистора VT1 с некоторой задержкой и быстрого закрывания, что положительно сказывается на переключении выходных транзисторов, разрядный транзистор таймера (вывод 7) DA1 подключен к базе VT1.

Демпфирующие диоды VD5, VD6, включенные параллельно транзисторам VT2, VT3, защищают их от импульсов обратного напряжения. В некоторых транзисторах они уже установлены в корпусе, но в паспортных данных это не всегда отражено. Во время закрытого состояния ключей энергия, накопленная в трансформаторе Т1, передается в нагрузку и через демпферные диоды частично возвращается в источник питания.

Разделительный конденсатор С8 устраняет протекание через первичную обмотку трансформатора Т1 постоянной составляющей тока при разных характеристиках транзисторов VT2, VT3 и конденсаторов фильтра С9, С10. Демпферная цепочка С7-R16 устраняет выбросы обратного напряжения, возникающие в момент переключения тока в обмотках Т1. Дроссель L1 уменьшает динамические потери в коммутирующих транзисторах, сужая спектр генерируемых колебаний. Конденсаторы фильтра С9, С10 с выравнивающими резисторами R18, R19 создают искусственную среднюю точку для трансформатора инвертора.

Питание генератора импульсов выполнено по бестрансформаторной схеме через параметрический стабилизатор R6-R10-VD3.

Сетевое напряжение проходит через фильтр С12-Т2-С11. Ограничение тока заряда конденсаторов фильтра С9, С10 при включении устройства производит термистор RT1. Его высокое сопротивление в "холодном" состоянии переходит в низкое по мере разогрева токами заряда конденсаторов фильтра. Варистор RU1 шунтирует выбросы напряжения, поступающие при работе преобразователя в сеть.

Высокочастотные диоды VD7, VD8 выпрямляют напряжение с вторичной обмотки Т1, и на конденсаторе фильтра С6 получается постоянное напряжение, поступающее в нагрузку через амперметр РА1 с внутренним шунтом на 10 А. С помощью светодиодаHL2 осуществляется визуальный контроль наличия напряжения. Защита инвертора от короткого замыкания выполнена на предохранителе FU1. Заряжаемый аккумулятор подключается к клеммам ХТ1 и ХТ2 в соответствующей полярности проводом сечением 2...4 мм2.

Для поддержания заданного выходного напряжения в схему введена цепь обратной связи. Напряжение с делителя R14-R15,пропорциональное выходному, через ограничительный резистор R13 поступает на светодиод оптрона VU1. Стабилитрон VD4 ограничивает превышение напряжения на светодиоде. Фототранзистор оптрона подключен к входу управления (выводу 5) таймера DA1.

При увеличении выходного напряжения, например, из-за роста сопротивления нагрузки, увеличивается ток через светодиод VU1, фототранзистор оптрона открывается сильнее и шунтирует вход управления таймера. Напряжение на входе верхнего компаратора DA1 падает, он переключает внутренний триггер при меньшем напряжении на конденсаторе С1, т.е. длительность импульса DA1 уменьшается. Соответственно снижается выходное напряжение, и наоборот. Температурную зависимость выходного напряжения устройства можно компенсировать, заменив R15 терморезистором и закрепив его через прокладку на радиаторе транзисторов.

Детали и конструкция. Высокочастотный трансформатор Т1 типа ЕRL-35R320 или АР-450-1Т1 применен без переделки от компьютерного блока питания АТ/АТХ. Примерное число витков первичной обмотки - 38...46, провод 0,8 мм. Вторичная обмотка имеет 2x7,5 витков и выполнена жгутом 4x0,31 мм. Дроссель L1 используется от фильтра вторичного напряжения блока питания компьютера. Сердечник - ферритовый, размерами 10x26x10 мм. Число витков - 15...25, провод 0,6...0,8 мм. Дроссель Т2 -двухобмоточный, типа 15-Е000-0148 или фильтр НР1-Р16 на ток 1,6 А (индуктивность - 2x6 мГн).

В качестве таймера DA1 можно использовать отечественную микросхему КР1006ВИ1 или импортные микросхемы-аналоги, основные параметры которых приведены в табл.1. Для замены силовых транзисторов VT2, VT3 подойдут типы, указанные в табл.2.

Элементы устройства размещены на двух печатных платах, чертежи которых представлены на рис.2 и 3.

Полумостовой инвертор в зарядном устройстве

Полумостовой инвертор в зарядном устройстве

Транзисторы VT2, VT3 необходимо установить на радиатор через прокладки и изолированные шпильки. Собранные печатные платы монтируются в подходящем корпусе на стойках, амперметр устанавливается в вырезанном отверстии, рядом приклеиваются светодиоды HL1, HL2 и закрепляются регулятор тока R1,выключатель SA1 и предохранители FU1, FU2.

Перед первым включением устройства вместо сетевого предохранителя подключается лампочка от холодильника (220 Вх15 Вт), а вместо нагрузки - автомобильная лампочка (12 Вх55 Вт). Слабый накал лампочки холодильника указывает на рабочее состояние схемы. Через несколько секунд работы после отключения от сети проверяется нагрев транзисторов. Если температура нормальная, резистором R14 при среднем положении движка R1 устанавливается выходное напряжение (под нагрузкой) 13,8 В. При повороте движка R1 яркость автомобильной лампочки должна изменяться.

При недостаточном охлаждении транзисторов и диодов выпрямителя на корпусе зарядного устройства дополнительно устанавливается вентилятор. Но лучше использовать корпус от устаревшего блока питания компьютера со штатным вентилятором.

Авторы: В.Коновалов, Е.Цуркан, А.Вантеев, Творческая лаборатория  "Автоматика и телемеханика", г.Иркутск

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Apple - самая дорогая компания в истории 02.09.2012

Стоимость акций Apple во время торгов на бирже NASDAQ 20 августа 2012 г. достигла $665,15 за штуку, что сделало калифорнийского производителя компьютеров и смартфонов самой дорогой компанией в истории с рыночной капитализацией $623,5 млрд. Ранее этот рекорд принадлежал корпорации Microsoft, рыночная капитализация которой в 1999 г. достигала $618,9 млрд. С тех пор стоимость компании снизилась до текущих $258,2 млрд.

Отметки в $600 млрд Apple достигла в апреле 2012 г. Затем стоимость ее акций несколько снизилась, а за последние три месяца возросла на 25%. Этот взлет помог ей существенно оторваться от нефтяного гиганта Exxon Mobil, сохранявшего звание самой дорогой компании, пока оно не перешло к Apple. В настоящее время стоимость Exxon Mobil равна $405,8 млрд. В феврале 2012 г. капитализация Apple превысила суммарную капитализацию Microsoft и Google: $456 млрд против $256,7 млрд и $198,9 млрд соответственно. Данное значение было достигнуто после того, как вендор сообщил о рекордных квартальных показателях.

Рост курса акций Apple связан с ожиданием выхода нового iPhone, iPad с 7-дюймовым дисплеем и телевизора. По информации источников, до конца 2012 г. Apple планирует представить сразу несколько ключевых продуктов, что сделает данный запуск самым крупным в ее истории. Об это свидетельствуют объемы контрактов на поставку электронных деталей для устройств, которые пока не были анонсированы.

Другие интересные новости:

▪ Портативный определитель гриппа

▪ Три года под взглядом телекамер

▪ Экспериментальные подводные дата-центры Microsoft

▪ Беспилотные автобусы WEpod

▪ 84-дюймовый дисплей NEC MultiSync X841UHD с разрешением 3840x2160 пикселей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочные материалы. Подборка статей

▪ статья Дурак-недотепа. Крылатое выражение

▪ статья Какой юридический термин в древности означал просто кусок дерева? Подробный ответ

▪ статья Директор предприятия. Должностная инструкция

▪ статья Передатчик для телеуправления. Энциклопедия радиоэлектроники и электротехники

▪ статья Элементы поверхностного монтажа в радиолюбительских конструкциях. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Виктор
На схеме первая ножка оптопары идет на сопротивление r13 а на плате на минус где правильно.

Ышан
Меня смущают номиналы R10,8. Мне кажется они должны быть на порядок больше, иначе рассеиваемая мощность получается ~15W.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025