Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель емкости аккумуляторных батарей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

В процессе эксплуатации аккумуляторных батарей рекомендуется периодически контролировать их электрическую емкость, измеряемую в ампер-часах (Ач). Для определения этого параметра необходимо разряжать полностью заряженную батарею стабильным током и фиксировать время, по истечении которого ее напряжение уменьшается до заранее установленного значения. Чтобы оценить состояние аккумуляторной батареи более полно, необходимо знать ее емкость при различных значениях тока разрядки.

Для этого и предназначено предлагаемое устройство. С целью упрощения его конструкции для отсчета времени разрядки применены бытовые электронно-механические часы с питанием от одного гальванического элемента напряжением 1,5 В (перед использованием часов в устройстве его необходимо удалить).

Схема измерителя представлена на рис. 1.

Измеритель емкости аккумуляторных батарей
Рис. 1

На микросхеме DA2 собран стабилизатор тока разрядки аккумуляторной батареи и одновременно стабилизатор напряжения питания часов.

Ток разрядки выбирают переключателем SA1 В его первом положении ("50 мА") стабилизатор DA2 нагружен постоянно подключенным к его выходу резистором R6 В положениях "250 мА" и "500 мА" параллельно ему подключаются соответственно резисторы R7 и R8. Светодиод HL1 индицирует режим разрядки, ток через него стабилизирован полевым транзистором VT3.

Параллельный стабилизатор напряжения DA1 использован как компаратор. С помощью транзистора VT1 он управляет мощным полевым переключательным транзистором VT2.

Перед началом измерения к устройству подключают электронно-механические часы, стрелки которых предварительно установлены на 12 ч 0 мин (условный 0 отсчета времени разрядки). Затем переключателем SA1 выбирают ток разрядки, а переменным резистором R4 устанавливают напряжение в интервале 3...12 В, до которого следует разрядить батарею аккумуляторов. После ее подключения нажимают на кнопку SB1 "Пуск".

Поскольку напряжение заряженной батареи больше установленного значения, напряжение на управляющем входе стабилизатора DA1 превысит 2,5 В и его выходной ток возрастет. В результате транзистор VT1, а вслед за ним и VT2 откроются, и после опускания кнопки SB1 процесс разрядки будет продолжен, о чем сигнализирует светодиод HL1.

Одновременно часы начнут отсчет времени разрядки.

По мере разрядки батареи напряжение на ней уменьшается, и когда оно станет меньше установленного значения, ток через стабилизатор DA1 резко уменьшится, поэтому транзисторы VT1, VT2 закроются. Разрядка прекратится, светодиод HL1 погаснет, питающее напряжение на часы перестанет поступать и они остановятся. Емкость батареи вычисляют, умножив ток разрядки на зафиксированное часами время.

Все детали измерителя, кроме переключателя SA1, кнопки SB1 и переменного резистора R4. монтируют на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2.

Измеритель емкости аккумуляторных батарей
Рис. 2

Плата рассчитана на установку постоянных резисторов. Р1-4, С2-33, керамического конденсатора К10-17 (С1) и оксидных серии ТК фирмы Jamicon (остальные), микросхемы TL431CLP в корпусе ТО-92. Выводы стабилизатора LM317T (DA2) припаивают на стороне печатных проводников, после чего его закрепляют винтом с гайкой на теплоотводе площадью не менее 100 см2 (рис. 3).

Измеритель емкости аккумуляторных батарей
Рис. 3

Во избежание замыканий между ним и платой помещают изолирующую прокладку из тонкого пластика, которую приклеивают эпоксидным клеем к плате и теплоотводу. Собранное и проверенное а работе устройство помещают в пластмассовый корпус подходящих размеров, на стенке которого крепят переключатель SA1 (например, SPl 12-DP3T, SLF-2301-7R), кнопку SB1 (любая малогабаритная с самовозвратом, например, ПКН159) и переменный резистор R4 (СПЗ-46М). Напротив светодиода HL1 в стенке сверлят отверстие.

Вместо транзистора КТ361Б в устройстве можно применить любой серий КТ208, КТ209, КТ361, КТ3107, вместо КП303Б - транзистор этой серии с индексами А, В и Г. Светодиод АЛ307БМ заменим любым с прямым напряжением 1,8...2,5 В и достаточной яркостью свечения при токе 2...3 мА.

Налаживание начинают с измерения разрядного тока в различных положениях переключателя SA1. Для этого устройство через миллиамперметр с пределом измерения 0...5 А подключают к регулируемому источнику питания с выходным напряжением около 5 В и током нагрузки не менее 500 мА.

Точные значения разрядного тока устанавливают подборкой резисторов R6-R8 (начиная с первого).

Переменный резистор R4 снабжают шкалой, которую градуируют следующим образом. Подключив устройство и вольтметр с соответствующим пределом измерения к выходу регулируемого источника питания и переведя движок резистора R4 в нижнее (по схеме) положение, включают источник и устанавливают на его выходе напряжение, до которого допустимо разряжать данную аккумуляторную батарею в процессе эксплуатации.

Затем кратковременно нажимают на кнопку SB1 и, медленно поворачивая движок, добиваются погасания светодиода HL1, после чего на шкале делают соответствующую отметку, аналогично наносят на шкалу и отметки, соответствующие значениям напряжения разрядки других батарей.

Автор: И. Нечаев, г. Москва

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Перемещение объектов звуком 10.12.2022

Исследователи Университета Миннесоты открыли новый метод перемещения объектов с помощью ультразвуковых волн. Исследование открывает возможности для использования бесконтактных манипуляций в таких отраслях, как производство и робототехника, где для перемещения устройств не нужен встроенный источник энергии.

Хотя ранее уже было продемонстрировано, что световые и звуковые волны могут манипулировать объектами, последние всегда были меньше длины волны звука или света, не больше миллиметра или даже нескольких нанометров.

Команда Университета Миннесоты разработала метод, позволяющий перемещать более крупные объекты, используя принципы физики метаматериалов.

Метаматериалы - это материалы, которые искусственно созданы для взаимодействия с волнами, такими как свет и звук. Поместив на поверхность объекта узор из метаматериалов, ученые смогли направить звук в определенном направлении, не воздействуя на него физически.

"Мы уже давно знаем, что волны, свет и звук, могут манипулировать объектами. Наше исследование отличается тем, что мы удерживаем гораздо большие объекты, если покрываем их поверхность метаматериалом, или "метаповерхностью", - отметил Огнен Илич, старший автор исследования и доцент кафедры машиностроения Университета Миннесоты. - "Когда мы размещаем эти крошечные узоры на поверхности объектов, мы отражаем звук в любом направлении. При этом мы можем контролировать акустическую силу, действующую на объект".

Используя эту технику, исследователи могут не только перемещать объект вперед, но и притягивать его к источнику звука - не слишком похоже на технологию тракторного луча в научно-фантастических историях, таких как "Звездный путь".

Новый метод востребован для перемещения объектов в таких областях, как производство или робототехника.

Бесконтактное манипулирование является актуальной областью исследований в оптике и электромагнетизме, но в данном исследовании предлагается другой метод бесконтактного управления, который предлагает преимущества, которых нет у других методов.

Другие интересные новости:

▪ Ультракомпактный электромобиль iEV Z

▪ Создана первая синтетическая сетчатка глаза

▪ Экологически чистое топливо на основе углекислого газа

▪ Глаз мотылька поможет создать антибликовое покрытие

▪ Смартфон ZTE Grand S3 со сканером радужной оболочки глаза

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Аудиотехника. Подборка статей

▪ статья Скованные одной цепью. Крылатое выражение

▪ статья Где живет больше всего людей? Подробный ответ

▪ статья Обслуживание автомобильного пробоотборника. Типовая инструкция по охране труда

▪ статья Генератор импульсов с независимой регулировкой фазы. Энциклопедия радиоэлектроники и электротехники

▪ статья Тайна волшебной мумии. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025