Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Схема импульсного стабилизатора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

Схема импульсного стабилизатора ненамного сложней обычного (рис. 1.9), но она более сложная в настройке. Поэтому недостаточно опытным радиолюбителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное устройство двумя руками - только одной!), не рекомендую повторять эту схему.

На рис. 1.9 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Схема импульсного стабилизатора
Рис. 1.9. Электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сетевое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзистора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через резистор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, в итоге транзистор открывается полностью, до состояния насыщения. Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт).

Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную. Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400...450 В.

Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только падение напряжения на нем превысит 1...1,5 В, транзистор VT2 откроется и замкнет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор С3 ускоряет реакцию VT2. Диод VD3 необходим для нормальной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме - регулируемом стабилитроне DA1.

Для гальванической развязки выходного напряжения от сетевого используется оптрон VO1. Рабочее напряжение для транзисторной части оптрона берется от обмотки II трансформатора T1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивление коллектор-эмиттер фототранзистора VO1.2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет слабее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет "раскачиваться" в полную силу.

Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивлением 100...330 Ом.

Налаживание

Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора C1. Движок резистора R6 устанавливают в нижнее (по схеме) положение.

Устройство включают и сразу отключают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и С6 Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет - генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить транзистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют местами выводы обмотки II (или I только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VT1, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряжения на ней не должно превышать пары вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III. И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок построечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное падение напряжения на выводах DA1 превышает 1,25 В, на выводах светодиода - 1,5 В).

Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100...680 Ом. Следующим шагом настройки требуется установка на выходе устройства напряжения 3,9...4,0 В (для литиевого аккумулятора).

Данное устройство заряжает аккумулятор экспоненциально уменьшающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо). За пару часов режима зарядки аккумулятор набирает до 80% своей емкости.

О деталях

Особый элемент конструкции - трансформатор. Трансформатор в этой схеме можно использовать только с разрезным ферритовым сердечником.

Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. Сам преобразователь - одноактный, с постоянным подмагничиванием, поэтому сердечник должен быть разрезным, с диэлектрическим зазором (между его половинками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного аналогичного устройства.

В крайнем случае его можно намотать самому: сечение сердечника 3,5 мм2, обмотка I - 450 витков проводом диаметром 0, 1 мм, обмотка II - 20 витков тем же проводом, обмотка III - 15 витков проводом диаметром 0,6...0,8 мм (для выходного напряжения 4,5 В). При намотке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании - см. выше).

Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 - любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току должен быть больше 30.

Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, применяют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзисторы рассчитаны на предельное напряжение 300 В, и при малейшем повышении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод.

Для транзисторов KSE130O3 и MJE13003 теплоотвод не нужен (в большинстве случаев цоколевка - как у отечественных транзисторов КТ817). Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3.

Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400.600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки.

Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление резистора. Для ограничения амплитуды этого броска нельзя - он будет сильно нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004...4007 или КД221 с любым буквенным индексом.

Стабилизатор DA1 и резистор R6 можно заменить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

"Общий" провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Автор: Кашкаров А.П.

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Шимпанзе могут менять свои убеждения 10.11.2025

Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим. Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации. Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми. Для экспериментов использовались шимпанзе из ...>>

Полет на Марс: испытание для тела и выживания человечества 10.11.2025

Исследование космоса и перспективы полета на Марс привлекают внимание ученых и инженеров по всему миру. Но за технологическими достижениями скрывается серьезная угроза для здоровья астронавтов. Как отмечает Interesting Engineering, даже самые современные ракеты и системы жизнеобеспечения не способны полностью защитить человека от физических и генетических изменений, возникающих во время длительных космических миссий. Эти риски включают потерю костной массы, ослабление мышц и даже потенциальные повреждения ДНК. Путешествие на Марс длится от шести до девяти месяцев. В условиях невесомости организм, привыкший к земной гравитации, претерпевает значительные изменения. Мышцы атрофируются, кости теряют до 1% плотности в месяц, сердце уменьшается в размерах, а позвоночник удлиняется, вызывая боль и дискомфорт. После возвращения на Землю астронавты сталкиваются с головокружением и проблемами при вставании из-за адаптации к гравитации. Особую опасность представляет перераспределение жидкос ...>>

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Случайная новость из Архива

Автомобильный сверхчувствительный датчик изображения Sony IMX324 28.10.2017

Компания Sony представила новый 7,72-Мп датчик IMX324. Датчик располагает 7,42 млн эффективных пикселей - это наивысший показатель в отрасли. Соотношение сторон датчика 1/1,7. Чувствительность определяется на уровне 2666 мВ. Разрешение датчика таково, что камера с его использованием способна получить четкое изображение дорожного знака с расстояния около 160 метров. Человеку такое не под силу.

Подобные датчики ориентированы на работу в электронных системах подсказки водителям ADAS (advanced driver-assistance systems). Данная разработка, по словам Sony, совместима с процессорами изображений EyeQ4 и EyeQ5 компании Mobileye, приобретенной ранее компанией Intel.

В ночное время датчики IMX324 работают как в "пакетном" режиме с фильтрами RCCC (красный, три чистых), когда для повышения чувствительности четыре соседних пикселя работают как один (режим pixel binning mode), так и в режиме чередования свет/тень. Массив пикселей для каждого кадра попеременно переключается из режима повышенной чувствительности для захвата изображения в темных участках сцены, в режим захвата засвеченных участков в ярком уличном освещении и в свете передних фар автомобиля. Итоговое изображение, которое "склеивается" специализированным процессором, получается детализированным и относительно контрастным в тенях и на свету.

Датчики Sony IMX324 способны захватывать изображение с внешним освещением 0,1 люкс. Это равнозначно съемке в условиях света одной лишь полной луны в безоблачный день. Датчики помогут на большом удалении различить пешехода на трассе и возможные препятствия. Датчики, что характерно для Sony, многослойные и предназначены для стековой компоновки, что позволяет делать камеры с ними компактными.

Другие интересные новости:

▪ Статин на биоконвейере

▪ Редкие земли с океанского дна

▪ ATSAMR34/35 - радио LoRa плюс микроконтроллер Cortex-M0+ для интернета вещей

▪ Процессоры Intel Xeon E5-2600/1600 v3

▪ Новая серия жидкокристаллических мониторов SONY

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Бытовая электроника. Подборка статей

▪ статья Орхан Памук. Знаменитые афоризмы

▪ статья Когда состоялась первая забастовка? Подробный ответ

▪ статья Егерь (старший егерь). Должностная инструкция

▪ статья 6 дб колинеарная УКВ антенна. Энциклопедия радиоэлектроники и электротехники

▪ статья Сеанс гипноза. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025