Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лабораторный источник питания с регулировкой тока ограничения, 0-30 вольт 3 ампера. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Для настройки или ремонта радиотехнических устройств необходимо иметь несколько источников питания. У многих дома уже есть такие устройства, но, как правило, они имеют ограниченные эксплуатационные возможности (допустимый ток нагрузки до 1 А, а если и предусмотрена токовая защита, то она инерционна или без возможности регулировать - триггерная). В общем такие источники по своим техническим характеристикам не могут конкурировать с промышленными блоками питания. Приобретать же универсальный лабораторный промышленный источник довольно дорого.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам. При этом он может быть простым в изготовлении и настройке.

Основные требования, которым должен удовлетворять такой источник питания: регулировка напряжения в диапазоне 0...30 В; способность обеспечить ток в нагрузке до 3 А при минимальных пульсациях; регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе. Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение.

Всем этим требованиям удовлетворяет предлагаемая ниже схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока (до 3 А).

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 30 В;
  • напряжение пульсаций при токе 3 А не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 3 А;
  • коэффициент нестабильности по напряжению не хуже 0,001%/В;
  • коэффициент нестабильности по току не хуже 0,01%/В;
  • КПД источника не хуже 0,6.

Электрическая схема источника питания, рис. 4.10, состоит из схемы управления (узел А1), трансформатора (Т1), выпрямителя (VD5...VD8), силового регулирующего транзистора VT3 и блока коммутации обмоток трансформатора (А2).

Лабораторный источник питания с регулировкой тока ограничения, 0-30 вольт 3 ампера
Рис. 4.10. Электрическая схема универсального источника питания

Схема управления (А1) собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельной обмотки трансформатора. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства. А для облегчения теплового режима работы силового регулирующего транзистора применен трансформатор с секционированной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2, что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации (А2), чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 7,5 В - включается К1; при превышения уровня 15 В включается К2; при превышении 22 В - отключается К1 (в этом случае с обмоток трансформатора поступает максимальное напряжение). Указанные пороги задаются используемыми стабилитронами (VD11 .VD13). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т.е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления (А1) состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от положения регулятора "Г (R18).

Стабилизатор напряжения собран на элементах DA1.1-VT2-VT3. Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами "грубо" (R16) и "точно" (R17). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R16-R17-R7 поступает на неинвертирующий вход операционного усилителя DA1/2. На этот же вход через резисторы R3-R5-R7 подается опорное напряжение +9 В. В момент включения схемы на выходе DA1/12 будет увеличиваться положительное напряжение (оно через транзистор VT2 приходит на управление VT3) до тех пор, пока напряжение на выходных клеммах Х1-Х2 не достигнет установленного резисторами R16-R17 уровня. За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход усилителя DA1/2, выполняется стабилизация выходного напряжения источника питания.

При этом выходное напряжение будет определяться соотношением:

где .

Соответственно изменяя сопротивление резисторов R16 ("грубо") и R17 ("точно"), можно менять выходное напряжение Iвых от 0 до 30 В.

Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R19 (относительно общего провода схемы). Это напряжение поступает через резистор R18 в точку соединения R6-R8. Со стабилитрона VD2 через R4-R6 подается опорное отрицательное напряжение (-9 В). Операционный усилитель DA1.2 усиливает разность между ними. Пока разность отрицательная (т.е. выходной ток меньше установленной резистором R18 величины), на выходе DA1/10 действует +15 В. Транзистор VT1 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе DA1/7 появится положительное напряжение, на выходе DA1/10 будет отрицательное напряжение и транзистор VT1 приоткроется. В цепи R13-R12-HL1 протекает ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT3.

Свечение красного светодиода(НИ) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoп), снимаемое с резистора R16, и опорное в точке соединения R6-R8-R18 взаимно компенсировались, т.е. появился нулевой потенциал. В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резистора R18. При этом ток в выходной цепи будет определяться соотношением:

где .

Диоды (VD3) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения ее без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства. Конденсатор С3 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Особенности конструкции

Части схемы, выделенные пунктиром (узлы А1 и А2), располагаются на двух печатных платах размером 80x65 мм из одностороннего стеклотекстолита толщиной 1...3 мм.

Для узла А1 топология и расположение элементов показаны на рис. 4.11.

Лабораторный источник питания с регулировкой тока ограничения, 0-30 вольт 3 ампера
Рис. 4.11. Топология печатной платы и расположение элементов узла А1

Узел А2 может быть выполнен объемным монтажом и его размеры зависят от типа применяемых реле.

При сборке использованы детали: подстроенные резисторы R5 и R6 типа СПЗ-19а; переменные резисторы R16.R18 типа СПЗ-4а или. ППБ-1А; постоянные резисторы R19 типа С5-16МВ на 5 Вт, остальные из серии МЛТ и С2-23 соответствующей мощности.

Конденсаторы С1, С2, С3, С10 типа К10-17, электролитические С4...С9 типа К50-35 (К50-32).

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения. Транзисторы VT1, VT2 могут быть заменены на КТ3107А (Б). Силовой транзистор VT3 устанавливается на радиатор площадью около 1000 см. кв. Разъем Х3 на плате. А1 типа. РШ2Н-2-15.

Реле К1, К2 применены польского производства типоразмера R-15 с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) - они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 3 или 5 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

Сетевой трансформатор Т1 изготавливается самостоятельно на основе броневого унифицированного промышленного трансформатора мощностью 160 Вт (например, из серии ОСМ1 ТУ16-717.137-83). Железо в месте расположения каркаса катушки имеет сечение 40x32 мм. Потребуется удалить все вторичные обмотки, оставив только сетевую (если первичная обмотка рассчитана на 380 В, то с нее сматываем 300 витков). Намотку начинаем с обмотки 8-9-10 - она содержит 38+38 витков проводом. ПЗП диаметром 0,23 мм. Обмотка 7-6-5-4-3 содержит 16+15+15+15 витков проводом ПЭЛ диаметром 1,5 мм Вторичные обмотки трансформатора должны обеспечивать на холостом ходу напряжения 18+18 В и 7,5+7,5+7,5+7,5 В соответственно.

При безошибочном монтаже в схеме узла А1 потребуется настроить только максимум диапазона регулировки выходного напряжения 0...30 В резистором R5 и максимальный ток защиты 3 А - резистором R6.

Блок коммутации (А2) в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С8.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока - красный (HL1).

Для увеличения максимально допустимого тока в нагрузке до 5 А в схему потребуется внести изменения, показанные на рис. 4.12 (устанавливается параллельно два силовых транзистора). Это вызвано необходимостью обеспечить надежную работу устройства в случае короткого замыкания на выходных клеммах.

Лабораторный источник питания с регулировкой тока ограничения, 0-30 вольт 3 ампера
Рис. 4.12. Изменение в схеме для тока в нагрузке до 5 А

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности P=U вх*I=35*5=175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт.

Переключающие напряжение с трансформатора Т1 репе К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

В случае выполнения источника питания на ток 5 А необходимо также уменьшить номинал резистора R19 до 0,2 Ом и с учетом этого пересчитать значения резистора R18 по формуле:

Автор: Шелестов И.П.

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Любители кофе и чая различаются генами 28.11.2018

Считается, что способность чувствовать горький вкус защищает животных от множества неприятностей - поскольку многие токсины как раз горькие, и если во рту начинает горчить, значит, то, что во рту, нужно немедленно выплюнуть. С другой стороны, мы пьем пиво, кофе, чай, ничуть не смущаясь их горечью. Впрочем, кофе все-таки любят не все, и можно предположить, что кофеманы просто хуже чувствуют его горькую составляющую, так что остальные оттенки кофейного вкуса легко перевешивают горечь.

Исследователи из Северо-Западного университета и Медицинского исследовательского института QIMR Berghofer, выяснили, что любители кофе более чувствительны к горечи, причем не просто к горечи, а именно к кофеину. Дело в том, что генов, кодирующих рецепторы горького вкуса, у нас довольно много, и в них могут попадать мутации, которые усиливают или ослабляют чувствительность к той или иной горькой молекуле. В частности, сейчас уже известно, что есть рецепторы, которые чувствуют кофеин, другие - хинин, третьи - синтетический 6-н-пропилтиоурацил, который часто используют, когда изучают восприятие горького вкуса. Для каждого из трех типов рецепторов описаны мутации, которые изменяют их чувствительность. Оставалось только проверить, действительно ли люди с пониженной чувствительностью к кофеину пьют больше кофе.

Исследователи проанализировали гены более 400 тыс. жителей Великобритании, которые также сообщали о своем образе жизни и своих привычках - в том числе и о том, насколько они любят чай, кофе и разные алкогольные напитки. Оказалось, что те, которые по генам должны быть очень чувствительны к кофеиновой горечи, пьют кофе больше остальных, не меньше четырех раз в день. В то же время те, кто должен быть особенно чувствителен к хинину и 6-н-пропилтиоурацилу, кофе избегали; те, кто был чувствителен к горечи 6-н-пропилтиоурацила, пили меньше алкоголя, в особенности красного вина.

Ученые предполагают, что те, кто особенно чувствителен к кофеиновой горечи, сумели ее полюбить, потому что та бодрость, которую он дает, перевешивает неприятный вкус. В таком случае чем чувствительнее человек к кофеину, тем больше он будет пить кофе. Притом любители чая будут любить чай потому, что они так и не научились любить кофеин - из-за сравнительно невысокой чувствительности кофеиновых горьких рецепторов.

Другие интересные новости:

▪ Саундбар Redmi Computer Speaker

▪ Атлантида в Гватемале

▪ Улучшение выработки энергии из рассеиваемого тепла

▪ Батарейка размером с крупицу соли

▪ Климат в эксперименте

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Узлы радиолюбительской техники. Подборка статей

▪ статья Письменность. История изобретения и производства

▪ статья Как появился сэндвич? Подробный ответ

▪ статья Ориентирование по природным явлениям. Советы туристу

▪ статья Телевизор - цветомузыкальная установка. Энциклопедия радиоэлектроники и электротехники

▪ статья Автоматическое смещение в смесителе. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Vasilii
[up] Этот блок питания действительно работает, отличная стабилизация, защита по току. Можно сделать на любой ток и напряжение. Прост в изготовлении, не требует наладки. А если ещё добавить регулируемую защиту от перенапряжения, то получился лаб. блок питания, не уступающий по характеристикам дорогим промышленным образцам.

Красимир
Регулировки тока от колко милиампера начнут регулируется???

Анатолий
Работает хорошо, но есть три, на мой взгляд, существенных недостатка. При выключении сильный бросок напряжения, при обрыве, или плохом контакте в регуляторах тока и напряжения- значения увеличиваются до максимума. Например: работаешь при напряжении 5 вольт, а напряжение неожиданно скаконуло до 30 вольт. И последнее- автоматика(переключение вторичной обмотки транса) при напряжении 210 вольт уже не работает.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025