Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Источник тока для компенсации саморазряда аккумуляторной батареи. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Поскольку саморазряд химических источников тока - дело неизбежное, его компенсации в радиолюбительской литературе всегда уделялось внимание. Схема автоматической приставки, которую после несложной доработки любого имеющегося зарядного устройства можно применить для этой цели, приведена в [1]. Существует и второй вариант - использование для этой цели маломощного источника тока (ИТ), постоянно подключенного к АКБ при ее длительном хранении. Такие устройства даже выпускались промышленностью. В качестве базовой (рис.1) в первом варианте (рис.2) ИТ была использована схема подзарядного устройства типа УП-Н12-0,05-УХЛ3.1, которое в декабре 1992 г. было выпущено ПО "Закарпатмаш" в г. Ужгороде. Поскольку при экспериментах со схемой имелось только руководство по эксплуатации, кроме параметров, приведенных в нем по мощности потребления (5,5 Вт в режиме короткого замыкания) ИТ в режиме короткого замыкания (КЗ), и величины тока КЗ 250 мА, других конструктивных данных по устройству не было.

Исходя из этих данных, был проведен ориентировочный расчет трансформатора питания. Определена величина входного напряжения: 5,5 Вт/0,25 А=22 В. Из имеющихся под рукой трансформаторов наиболее подходящим оказался понижающий трансформатор (ПТ) для 24-вольтового 25-ваттного паяльника от электропаяльного набора 2.940.005ТУ, выпускавшегося Винницким заводом "Маяк", схема которого показана на рис.3. Этот трансформатор обеспечивает получение на двух штатных гнездах типа СГЗ напряжений 24 и 28 В, имеет достаточно малый ток "холостого хода" (25 мА). Конструктивно решена и проблема электробезопасности: первичная и вторичная обмотки расположены в отдельных секциях каркаса. Сопротивление первичной обмотки примерно 100 Ом.

Устройство (рис. 1) представляет собой ИТ с высоким внутренним сопротивлением, выполненным на мощном транзисторе VT1.

Источник тока для компенсации саморазряда аккумуляторной батареи
(нажмите для увеличения)

Постоянство параметров выходного тока обеспечивается подачей стабилизированного напряжения с источника опорного напряжения (ИОН) на базу VT1, в связи с чем его выходной ток практически не зависит от величины нагрузки в цепи коллектора. При простой схемотехнике ИТ имеет хорошую температурную стабильность [2]. Высокие параметры получены благодаря использованию в качестве ИОН светодиода, выполняющего функции стабистора. В результате взаимной компенсации положительного температурного коэффициента h21э(+2 мВ/град) биполярного транзистора и отрицательного температурного коэффициента изменения падения напряжения от температуры светодиода удалось получить стабильность параметров тока заряда от температуры, что существенно при длительном периоде работы устройства.

Определенным недостатком схем рис.1 и рис.2 является возможность ошибочного подключения АКБ к ИТ в противоположной полярности со всеми вытекающими из этого последствиями. В [3] этот недостаток устранен, однако схема ИТ несколько усложнена. Более простое по сравнению с [3] схемотехническое решение использовано во втором варианте схемы ИТ, показанной на рис.4. В отличие от схем рис.1 и рис.2, вместо резистора R2 здесь использован транзисторный ключ, управляемый напряжением от заряжаемого АКБ, аналогично [1 ]. Из соображений, что светодиодная индикация должна однозначно определять состояние устройства на данный момент, схеме рис.4 по сравнению с [3] уделено большее внимание. В схему введен двухцветный светодиодный индикатор, который однозначно индицирует ту или иную полярность подключения АКБ к ИТ. Введение транзисторного ключа позволяет полностью исключить разряд АКБ через ИТ при инверсном подключении, а также устранить режим короткого замыкания, поскольку при замыкании XS1 и XS2 управляющего напряжения в нужной полярности на базу VT2 не поступает, он закрыт, и возможная цепь разряда АКБ прервана.

Источник тока для компенсации саморазряда аккумуляторной батареи

Индикатор полярности подключения АКБ к ИТ состоит из двух светодиодов: VD5 типа AJ1307A и VD6 типа АЛ307В красного и зеленого цвета свечения соответственно. Его работа очевидна. Схемотехнически светодиоды в индикаторе помимо сигнализации выполняют функцию самозащиты: диод, который светится, защищает от воздействия обратного напряжения (Uобр.макс=4 В) светодиод, включенный навстречу, ограничивая на нем Uобр.макс на уровне 1,6... 1,8 В. Вместо двух светодиодов разного цвета свечения можно применить двухцветный светодиод. Величина тока разряда АКБ через светодиодный индикатор при отключенном напряжении электросети 220 В определяется резистором R4. Для данной конструкции он равен 15мА. Варианты возможных состояний светодиодных индикаторов приведены в таблице.

Источник тока для компенсации саморазряда аккумуляторной батареи

Для уменьшения бесполезных потерь по цепям индикации подключения к электросети 220 В, диод VD8 подключен к обмотке ПТ с переменным напряжением 4 В (Т1, рис.3). Диод VD8 также защищен от обратного напряжения с помощью включенного во встречном направлении кремниевого диода VD7.

Источник тока для компенсации саморазряда аккумуляторной батареи

Данных об использованном радиаторе в [4] не было. В первом варианте реальной конструкции был применен мощный кремниевый транзистор КТ803, который как следует из справочника [5], рассеивает мощность без радиатора 5 Вт.

Поскольку самым тяжелым режимом для VT1 (рис.2) является режим КЗ (как возможный), именно в этом режиме (200 мА) и была проверена работа схемы. Мощность, рассеиваемая в этом режиме на регулирующем транзисторе: Р=240,2=4,8 (Вт). В процессе экспериментов транзистор VT1 нагревался существенно, поэтому был установлен на дополнительный радиатор (пластину) из дюралюминия размерами 46x85x1,5 мм. Сама пластина была укреплена на верхней крышке корпуса ПТ на трех резьбовых стойках высотой 12 мм.

Физический смысл большей величины тока КЗ, чем ток компенсации саморазряда (ТКС) при работе ИТ на АКБ (как на химический источник тока), в определенном упрощении можно представить как вычитание напряжения АКБ из питающего при неизменных внутренних сопротивлениях ИТ, АКБ и прочих условиях. После доработки схемы рис.2 транзисторным ключом (рис.4) тепловой режим VT1 значительно улучшился (Р=24 В0,06А=1,44 Вт), однако конструкция пластинчатого радиатора с установленным на нем VT1 была оставлена из соображений сохранения монтажного объема.

Источник тока для компенсации саморазряда аккумуляторной батареи
(нажмите для увеличения)

Монтаж элементов выпрямителя и ИТ выполнен между пластиной и верхней плоскостью корпуса ПТ навесным способом. В пластине просверлены четыре отверстия диаметром 5 мм, в которые установлены светодиоды. Светодиоды и пластина взаимно зафиксированы с помощью молекулярного клея. Подключение ИТ к АКБ осуществляется с помощью соединителя СШ5 и гибкой двухпроводной линии с зажимами соответствующей конструкции. В качестве XS1 и XS2 (рис.2 и рис.4) использованы свободные гнезда XS2.4 и XS2.5 ПТ (рис.3), в которые установлены дополнительные лепестки. В результате такой доработки ПТ полностью сохранил свои первоначальные функции.

Детали. Транзисторы в ИТ желательно применить кремниевые на мощность от 20 Вт и выше, желательно в металлическом корпусе, с напряжением 1)эк не менее 50 В. Резистор R1 типа МЛТ1, R2 МЛТ-0,5. Трансформатор Т1 (рис.3) можно изготовить самостоятельно, например, на магнитопроводе Ш16x24 (S=3,84 см2) от выходного трансформатора УНЧ лампового цветного телевизора. Трансформаторная сталь, из которой изготавливался его магнитопровод, на частоте 50 Гц имеет малые ватт-потери, что важно для Т1 при предполагаемом длительном режиме работы.

Расчет количества витков Т1 проведен по рекомендациям [6] по формуле 50/S (с учетом использования качественных магнитопроводов эмпирическое число уменьшено до 50). Откуда N=50/S (см2)=50/3,84=13 (витков/В). Количество витков первичной обмотки 220x13=2870, вторичной 13х24х 1,2=370 + 13x4x1,2=63 (количество витков вторичной обмотки увеличено на 20%). Диаметр провода обмоток рассчитывают по формуле: d=0,8(l)0,5. Для первичной обмотки из соображений уменьшения активного сопротивления принят диаметр 0,15 мм. К примеру, для вторичной обмотки при токе КЗ 0,2 A d=0,8(0,2)0,5=0,36 (мм). Ток "холостого хода" двух изготовленных трансформаторов, рассчитанных по приведенным формулами и собранных на упомянутых магнитопроводах, был около 5 мА.

Настройка схемы (рис.2). Отсоединяют светодиод VD2 (рис.2) от транзистора и подключают его непосредственно к выпрямительному мосту. Подключают в разрыв цепи VD2 (точка А) авометр, включенный амперметром. Вместо резистора R2 подсоединяют потенциометр на 4,7 кОм, включенный реостатом и установленный на максимум сопротивления. Изменяя сопротивление потенциометра, устанавливают ток через VD2 10 мА. Подсоединяют VD2 к транзистору. Вместо эмиттерного резистора R1 устанавливают проволочный потенциометр 47... 100 Ом, включенный реостатом и установленный на максимум сопротивления. Подключают к XS1 и XS2 авометр, включенный амперметром на максимальный предел измерения. Изменяя сопротивление потенциометра, устанавливают ток КЗ 200 мА. Величина ТКС АКБ, рекомендованная [3], при подключенной (предварительно заряженной) АКБ должна составлять 45 мА.

Примечание В связи с шунтированием переходом Э-Б транзистора VT1 ИОН, светодиод VD2 (рис.1 и рис.2) без нагрузки (при отсутствии подключения АКБ или короткого замыкания по выходу) светиться не должен.

Настройка схемы (рис.4). Подключают к выходу ИТ заряженную АКБ с напряжением 14,5 В. Заменяют резистор R4 потенциометром на 470 кОм, включенным реостатом и установленным на максимум сопротивления. Устанавливают потенциометром ток через миллиамперметр 10 мА. Установка выходного тока ИТ рис.4 аналогична установке выходного тока ИТ рис.2, но должна проводиться только с подключенной в соответствующей полярности АКБ. Величина выходного тока ИТ рис.4 должна равняться сумме ТКС АКБ плюс ток, проходящий через индикатор подключения АКБ, т.е. 45+15=60 (мА).

Литература:

  1. Елкин С. А. Зарядно-питающее устройство с расширенными эксплуатационными возможностями//Электрик. - 2000. - №4. С.46.
  2. Редакционный перевод "Светодиод-термокомпенсатор"//Радио.- 1978.-№4.-С.61. 3. Чайи Л. Сохранитель заряда аккумуляторных батарей//Радиохобби. - 2003. - №4. - C.59.
  3. Руководство по эксплуатации УА2.940.017РЭ ПО "Закарпатмаш".
  4. Терещук P.M. и др. Полупроводниковые приемно-усилительные устройства. Справочник радиолюбителя. - К.: Наукова думка, 1981.- С. 125.
  5. Поляков В. Уменьшение поля рассеяния тронсформатора//Родио. - 1983. - №7. - C.28.

Автор: С.А. Елкин

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Дождевой электрогенератор 08.11.2025

Группа разработчиков Нанкинского университета аэронавтики и астронавтики представила дождевой электрогенератор, который превращает дождевые капли в источник электричества, используя саму воду как структурный и электрический элемент. В отличие от традиционных капельных генераторов, где электричество создается на твердых диэлектрических пленках с металлическими электродами, новое устройство плавает непосредственно на поверхности воды. Вода одновременно выполняет роль опоры и проводника, что позволило снизить вес системы на 80%, а стоимость уменьшить почти наполовину, сохранив при этом мощность до 250 вольт на каждую каплю. "Мы позволили воде одновременно выполнять структурную и электрическую функции, создав легкую, доступную и масштабируемую систему", - объяснил профессор Ванлин Гуо, ведущий автор исследования. Такая концепция открывает путь к созданию гидровольтаических систем, которые могут работать в водоемах без использования суши, дополняя солнечные и ветровые технологии. П ...>>

Климат влияет на длительность беременности 07.11.2025

Беременность традиционно воспринимается как естественный биологический процесс с предсказуемыми сроками, однако современные исследования все чаще доказывают, что на ее продолжительность влияют факторы, выходящие далеко за пределы медицины. Среди них особое место занимают климат и окружающая среда - именно эту взаимосвязь впервые подробно изучили ученые из Университета Кертина в Австралии. Их работа раскрывает, что экстремальные погодные условия способны не только вызывать преждевременные роды, но и, напротив, удлинять срок беременности. Команда исследователей проанализировала данные почти 400 тысяч новорожденных, появившихся на свет в Западной Австралии. Результаты оказались неожиданными: климатические колебания заметно влияли на организм будущих матерей, особенно у тех, кто рожал после 41-й недели беременности. По словам доктора Сильвестра Додзи Ньядана из Школы народного здоровья Университета Кертина, проблема перенашивания долгое время оставалась в тени, хотя ее последствия могут ...>>

Случайная новость из Архива

Физкультура сберегает хромосомы 01.11.2008

По существующей теории, срок жизни клетки определяют кончики хромосом, так называемые теломеры. При каждом делении они немного укорачиваются. Наконец, наступает момент, когда теломеры укоротились настолько, что клетка больше не может делиться и гибнет.

Результаты исследования, проведенного в Королевском колледже Лондона, показывают, что занятия физкультурой замедляют разрушение хромосом и старение клеток.

Физиологи обследовали 67 пар близнецов, в которых один брат занимается физкультурой, а другой - нет. Оказалось, что хромосомы активных людей выглядят на 10 лет моложе, чем хромосомы сидячих.

Другие интересные новости:

▪ Электричество из грибов

▪ Технология управления колониями микророботов

▪ 20-нанометровые чипы DRAM LPDDR3 плотностью 6 Гбит

▪ Головная боль от мороженого

▪ КПД графеновых панелей повышен

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Палиндромы. Подборка статей

▪ статья Не в бровь, а в глаз. Крылатое выражение

▪ статья Зачем бурят сверхглубокие скважины? Подробный ответ

▪ статья Черешня. Легенды, выращивание, способы применения

▪ статья Приставка - измеритель емкости. Энциклопедия радиоэлектроники и электротехники

▪ статья Приставка-селектор для телефона. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025