Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Источник тока для компенсации саморазряда аккумуляторной батареи. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Поскольку саморазряд химических источников тока - дело неизбежное, его компенсации в радиолюбительской литературе всегда уделялось внимание. Схема автоматической приставки, которую после несложной доработки любого имеющегося зарядного устройства можно применить для этой цели, приведена в [1]. Существует и второй вариант - использование для этой цели маломощного источника тока (ИТ), постоянно подключенного к АКБ при ее длительном хранении. Такие устройства даже выпускались промышленностью. В качестве базовой (рис.1) в первом варианте (рис.2) ИТ была использована схема подзарядного устройства типа УП-Н12-0,05-УХЛ3.1, которое в декабре 1992 г. было выпущено ПО "Закарпатмаш" в г. Ужгороде. Поскольку при экспериментах со схемой имелось только руководство по эксплуатации, кроме параметров, приведенных в нем по мощности потребления (5,5 Вт в режиме короткого замыкания) ИТ в режиме короткого замыкания (КЗ), и величины тока КЗ 250 мА, других конструктивных данных по устройству не было.

Исходя из этих данных, был проведен ориентировочный расчет трансформатора питания. Определена величина входного напряжения: 5,5 Вт/0,25 А=22 В. Из имеющихся под рукой трансформаторов наиболее подходящим оказался понижающий трансформатор (ПТ) для 24-вольтового 25-ваттного паяльника от электропаяльного набора 2.940.005ТУ, выпускавшегося Винницким заводом "Маяк", схема которого показана на рис.3. Этот трансформатор обеспечивает получение на двух штатных гнездах типа СГЗ напряжений 24 и 28 В, имеет достаточно малый ток "холостого хода" (25 мА). Конструктивно решена и проблема электробезопасности: первичная и вторичная обмотки расположены в отдельных секциях каркаса. Сопротивление первичной обмотки примерно 100 Ом.

Устройство (рис. 1) представляет собой ИТ с высоким внутренним сопротивлением, выполненным на мощном транзисторе VT1.

Источник тока для компенсации саморазряда аккумуляторной батареи
(нажмите для увеличения)

Постоянство параметров выходного тока обеспечивается подачей стабилизированного напряжения с источника опорного напряжения (ИОН) на базу VT1, в связи с чем его выходной ток практически не зависит от величины нагрузки в цепи коллектора. При простой схемотехнике ИТ имеет хорошую температурную стабильность [2]. Высокие параметры получены благодаря использованию в качестве ИОН светодиода, выполняющего функции стабистора. В результате взаимной компенсации положительного температурного коэффициента h21э(+2 мВ/град) биполярного транзистора и отрицательного температурного коэффициента изменения падения напряжения от температуры светодиода удалось получить стабильность параметров тока заряда от температуры, что существенно при длительном периоде работы устройства.

Определенным недостатком схем рис.1 и рис.2 является возможность ошибочного подключения АКБ к ИТ в противоположной полярности со всеми вытекающими из этого последствиями. В [3] этот недостаток устранен, однако схема ИТ несколько усложнена. Более простое по сравнению с [3] схемотехническое решение использовано во втором варианте схемы ИТ, показанной на рис.4. В отличие от схем рис.1 и рис.2, вместо резистора R2 здесь использован транзисторный ключ, управляемый напряжением от заряжаемого АКБ, аналогично [1 ]. Из соображений, что светодиодная индикация должна однозначно определять состояние устройства на данный момент, схеме рис.4 по сравнению с [3] уделено большее внимание. В схему введен двухцветный светодиодный индикатор, который однозначно индицирует ту или иную полярность подключения АКБ к ИТ. Введение транзисторного ключа позволяет полностью исключить разряд АКБ через ИТ при инверсном подключении, а также устранить режим короткого замыкания, поскольку при замыкании XS1 и XS2 управляющего напряжения в нужной полярности на базу VT2 не поступает, он закрыт, и возможная цепь разряда АКБ прервана.

Источник тока для компенсации саморазряда аккумуляторной батареи

Индикатор полярности подключения АКБ к ИТ состоит из двух светодиодов: VD5 типа AJ1307A и VD6 типа АЛ307В красного и зеленого цвета свечения соответственно. Его работа очевидна. Схемотехнически светодиоды в индикаторе помимо сигнализации выполняют функцию самозащиты: диод, который светится, защищает от воздействия обратного напряжения (Uобр.макс=4 В) светодиод, включенный навстречу, ограничивая на нем Uобр.макс на уровне 1,6... 1,8 В. Вместо двух светодиодов разного цвета свечения можно применить двухцветный светодиод. Величина тока разряда АКБ через светодиодный индикатор при отключенном напряжении электросети 220 В определяется резистором R4. Для данной конструкции он равен 15мА. Варианты возможных состояний светодиодных индикаторов приведены в таблице.

Источник тока для компенсации саморазряда аккумуляторной батареи

Для уменьшения бесполезных потерь по цепям индикации подключения к электросети 220 В, диод VD8 подключен к обмотке ПТ с переменным напряжением 4 В (Т1, рис.3). Диод VD8 также защищен от обратного напряжения с помощью включенного во встречном направлении кремниевого диода VD7.

Источник тока для компенсации саморазряда аккумуляторной батареи

Данных об использованном радиаторе в [4] не было. В первом варианте реальной конструкции был применен мощный кремниевый транзистор КТ803, который как следует из справочника [5], рассеивает мощность без радиатора 5 Вт.

Поскольку самым тяжелым режимом для VT1 (рис.2) является режим КЗ (как возможный), именно в этом режиме (200 мА) и была проверена работа схемы. Мощность, рассеиваемая в этом режиме на регулирующем транзисторе: Р=240,2=4,8 (Вт). В процессе экспериментов транзистор VT1 нагревался существенно, поэтому был установлен на дополнительный радиатор (пластину) из дюралюминия размерами 46x85x1,5 мм. Сама пластина была укреплена на верхней крышке корпуса ПТ на трех резьбовых стойках высотой 12 мм.

Физический смысл большей величины тока КЗ, чем ток компенсации саморазряда (ТКС) при работе ИТ на АКБ (как на химический источник тока), в определенном упрощении можно представить как вычитание напряжения АКБ из питающего при неизменных внутренних сопротивлениях ИТ, АКБ и прочих условиях. После доработки схемы рис.2 транзисторным ключом (рис.4) тепловой режим VT1 значительно улучшился (Р=24 В0,06А=1,44 Вт), однако конструкция пластинчатого радиатора с установленным на нем VT1 была оставлена из соображений сохранения монтажного объема.

Источник тока для компенсации саморазряда аккумуляторной батареи
(нажмите для увеличения)

Монтаж элементов выпрямителя и ИТ выполнен между пластиной и верхней плоскостью корпуса ПТ навесным способом. В пластине просверлены четыре отверстия диаметром 5 мм, в которые установлены светодиоды. Светодиоды и пластина взаимно зафиксированы с помощью молекулярного клея. Подключение ИТ к АКБ осуществляется с помощью соединителя СШ5 и гибкой двухпроводной линии с зажимами соответствующей конструкции. В качестве XS1 и XS2 (рис.2 и рис.4) использованы свободные гнезда XS2.4 и XS2.5 ПТ (рис.3), в которые установлены дополнительные лепестки. В результате такой доработки ПТ полностью сохранил свои первоначальные функции.

Детали. Транзисторы в ИТ желательно применить кремниевые на мощность от 20 Вт и выше, желательно в металлическом корпусе, с напряжением 1)эк не менее 50 В. Резистор R1 типа МЛТ1, R2 МЛТ-0,5. Трансформатор Т1 (рис.3) можно изготовить самостоятельно, например, на магнитопроводе Ш16x24 (S=3,84 см2) от выходного трансформатора УНЧ лампового цветного телевизора. Трансформаторная сталь, из которой изготавливался его магнитопровод, на частоте 50 Гц имеет малые ватт-потери, что важно для Т1 при предполагаемом длительном режиме работы.

Расчет количества витков Т1 проведен по рекомендациям [6] по формуле 50/S (с учетом использования качественных магнитопроводов эмпирическое число уменьшено до 50). Откуда N=50/S (см2)=50/3,84=13 (витков/В). Количество витков первичной обмотки 220x13=2870, вторичной 13х24х 1,2=370 + 13x4x1,2=63 (количество витков вторичной обмотки увеличено на 20%). Диаметр провода обмоток рассчитывают по формуле: d=0,8(l)0,5. Для первичной обмотки из соображений уменьшения активного сопротивления принят диаметр 0,15 мм. К примеру, для вторичной обмотки при токе КЗ 0,2 A d=0,8(0,2)0,5=0,36 (мм). Ток "холостого хода" двух изготовленных трансформаторов, рассчитанных по приведенным формулами и собранных на упомянутых магнитопроводах, был около 5 мА.

Настройка схемы (рис.2). Отсоединяют светодиод VD2 (рис.2) от транзистора и подключают его непосредственно к выпрямительному мосту. Подключают в разрыв цепи VD2 (точка А) авометр, включенный амперметром. Вместо резистора R2 подсоединяют потенциометр на 4,7 кОм, включенный реостатом и установленный на максимум сопротивления. Изменяя сопротивление потенциометра, устанавливают ток через VD2 10 мА. Подсоединяют VD2 к транзистору. Вместо эмиттерного резистора R1 устанавливают проволочный потенциометр 47... 100 Ом, включенный реостатом и установленный на максимум сопротивления. Подключают к XS1 и XS2 авометр, включенный амперметром на максимальный предел измерения. Изменяя сопротивление потенциометра, устанавливают ток КЗ 200 мА. Величина ТКС АКБ, рекомендованная [3], при подключенной (предварительно заряженной) АКБ должна составлять 45 мА.

Примечание В связи с шунтированием переходом Э-Б транзистора VT1 ИОН, светодиод VD2 (рис.1 и рис.2) без нагрузки (при отсутствии подключения АКБ или короткого замыкания по выходу) светиться не должен.

Настройка схемы (рис.4). Подключают к выходу ИТ заряженную АКБ с напряжением 14,5 В. Заменяют резистор R4 потенциометром на 470 кОм, включенным реостатом и установленным на максимум сопротивления. Устанавливают потенциометром ток через миллиамперметр 10 мА. Установка выходного тока ИТ рис.4 аналогична установке выходного тока ИТ рис.2, но должна проводиться только с подключенной в соответствующей полярности АКБ. Величина выходного тока ИТ рис.4 должна равняться сумме ТКС АКБ плюс ток, проходящий через индикатор подключения АКБ, т.е. 45+15=60 (мА).

Литература:

  1. Елкин С. А. Зарядно-питающее устройство с расширенными эксплуатационными возможностями//Электрик. - 2000. - №4. С.46.
  2. Редакционный перевод "Светодиод-термокомпенсатор"//Радио.- 1978.-№4.-С.61. 3. Чайи Л. Сохранитель заряда аккумуляторных батарей//Радиохобби. - 2003. - №4. - C.59.
  3. Руководство по эксплуатации УА2.940.017РЭ ПО "Закарпатмаш".
  4. Терещук P.M. и др. Полупроводниковые приемно-усилительные устройства. Справочник радиолюбителя. - К.: Наукова думка, 1981.- С. 125.
  5. Поляков В. Уменьшение поля рассеяния тронсформатора//Родио. - 1983. - №7. - C.28.

Автор: С.А. Елкин

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Фотонные микросхемы Infinera ePIC-500 и oPIC-100 29.03.2015

Компания Infinera, недавно завершившая совместно с BICS тестирование оптоволокна следующего поколения на маршруте дальностью 7400 км с применением модуляции PM-8QAM, на этой неделе представила две фотонные интегральные схемы для оптоволоконных сетей, построенных по новой модели. Эта модель отражает изменения, связанные с ростом и виртуализацией сетей. Она включает слои Layer C и Layer T.

В мире, где быстро растет число облачных сервисов и роль высокоскоростных соединений, поставщикам услуг необходимо масштабировать, упрощать и делать более гибкими свои сети. Средством решения этих задач на верхних уровнях является виртуализация сетевых функций (Network Function Virtualization, NFV), позволяющая перенести выполнение сетевые функций со специализированных аппаратных средств на программные сервисы, исполняемые на универсальных процессорах в облачных центрах обработки. Поддержка NFV и других облачных сервисов выделена с Layer C (Cloud). Для поддержки Layer C необходимо, чтобы облачные ЦОД и потребители были связаны хорошо масштабируемой и гибкой транспортной сетью Layer T (Transport).

Представленные Infinera микросхемы ePIC-500 и oPIC-100 позволяют "нарезать" пропускную способность на порции, разделяя ее между потребителями. Микросхема ePIC-500, устанавливаемая в узле, обладает пропускной способностью 500 Гбит/с, тогда как пропускная способность oPIC-100 равна 100 Гбит/с. Устанавливая ePIC-500 и oPIC-100 в разных участках сети масштаба района или города, можно формировать Layer T.

Специалисты Infinera смоделировали широкий спектр приложений, начиная от агрегации городского масштаба до зоны регионального покрытия с участками с различной топологией, включая звезды, ячейки и кольца. По их оценке, использование новых фотонных интегральных схем позволяет в среднем уменьшить число модулей на 28%, снизить энергопотребление на 31% и уменьшить потери пропускной способности на 45% по сравнению с существующими серийными решениями, построенными на использовании решений, работающих на одной длине волны, и решений со спектральным уплотнением с пропускной способностью 100, 200 и 400 Гбит/с.

Другие интересные новости:

▪ Фотокамера Polaroid 300

▪ Марс и его вулканическое прошлое

▪ Рыбы эволюционируют от рыболовов

▪ Сажа на крыше мира

▪ Новый прибор для радиоуправляемых самолетов и вертолетов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Искусство аудио. Подборка статей

▪ статья Самолет Вояджер. История изобретения и производства

▪ статья Какие функции при английском монархе исполнял камергер стула? Подробный ответ

▪ статья Водитель электротележки, электрокара. Типовая инструкция по охране труда

▪ статья Стабилизатор температуры и влажности. Энциклопедия радиоэлектроники и электротехники

▪ статья Переключатель тока КР1055КТ1А. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026