Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения 12-1000 вольт. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Этот преобразователь напряжения предназначен для питания фотоэлектронного умножителя, но от него можно питать счетчик Гейгера и другие высоковольтные приборы. Схемотехнические решения, заложенные в преобразователе, можно использовать при разработке стабилизированных источников питания многих других электронных устройств.

Преобразователь рис.1 обеспечивает на выходе напряжение 1000 В. Стабильность выходного напряжения такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного напряжения невозможно обнаружить по четырехзначному цифровому вольтметру, т.е. оно не превышает 0,1 %.

Преобразователь напряжения 12-1000 вольт
(нажмите для увеличения)

Устройство собрано по традиционной схеме с использованием обратного выброса напряжения самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс напряжения около 250 В на вторичной обмотке (около 40 В на первичной). Умножитель напряжения, образованный диодами VD3 -VD10 и конденсаторами С8 - С15, повышает его до 1000 В. Импульсы управления транзистором VT1 вырабатывает генератор с регулируемой скважностью, собранный на элементах DD1.1-DD1.3.

Управление скважностью импульсов осуществляется выходным напряжением операционного усилителя DA1. Выходное напряжение преобразователя через резистивный делитель R1-R3 поступает на неинвертирующий вход операционного усилителя и сравнивается с образцовым напряжением, стабилизированным термокомпенсированным стабилитроном VD1.

В момент включения выходное напряжение преобразователя равно нулю, близко к нулю и напряжение на выходе ОУ DA1. Генератор формирует импульсы максимальной длительности. При соотношении сопротивлений резисторов R9, R11, R12, указанных на схеме, отношение длительности импульсов положительной полярности на выходе элемента DD1.4 к периоду их повторения (коэффициент заполнения) близко к 0,65.

При достижении выходным напряжением заданного отрицательное напряжение на выходе ОУ DA1 возрастает, коэффициент заполнения уменьшается, а выходное напряжение стабилизируется. Во время испытания описываемого преобразователя длительность импульсов при нагрузке в указанных выше пределах изменялась от 10 до 12 мкс, а их частота повторения - от 18 до 30 кГц, что соответствует коэффициенту заполнения от 0,18 до 0,4. Потребляемый ток увеличивался с 22 до 47 мА. При максимальной нагрузке и уменьшении питающего напряжения до 10,5 В длительность импульсов увеличивалась до 16 мкс при частоте 36 кГц, что соответствует коэффициенту заполнения 0,57. Дальнейшее снижение напряжения питания приводило к срыву стабилизации. При токе нагрузки 100 мкА стабилизация сохраняется до напряжения источника питания 9,5 В. Конденсатор С3 образует нижнее плечо емкостной части делителя выходного напряжения. Без него напряжение пульсации с выхода преобразователя, равное примерно 1 В, проходило бы на вход ОУ DA1 через резисторы R1 и R2 практически без ослабления.

Конденсатор С4 обеспечивает преобразователю устойчивость работы в целом. Диод VD2 и резистор R12 ограничивают максимально возможный коэффициент заполнения. Минимальные длительность импульсов и коэффициент заполнения определяются соотношением сопротивлений резисторов R9 и R11. С уменьшением сопротивления резистора R9 минимальный коэффициент заполнения уменьшается и может стать равным нулю. Стабильность выходного напряжения при различных нагрузках обеспечивается за счет большого коэффициента усиления в петле обратной связи преобразователя.

Для устойчивости работы преобразователя при таком коэффициенте усиления необходим конденсатор С4 большой емкости. Но это приводит к увеличению длительности установления выходного напряжения при скачкообразных изменениях нагрузки. Сократить время установления можно уменьшением емкости конденсатора С4, включением последовательно с ним резистора сопротивлением несколько десятков килоом, подключением параллельно этому конденсатору резистора сопротивлением в несколько мегаом.

Все детали преобразователя можно смонтировать на печатной плате, выполненной из одностороннего фольгированного стеклотекстолита (рис.2).

Преобразователь напряжения 12-1000 вольт

Плата рассчитана в основном на установку резисторов типа МЛТ. Резисторы R1-R3, R5 и R7, от которых зависит долговременная стабильность преобразователя, стабильные типа С2-29.

Подстроечный резистор R6 - СП319а. Конденсатор С1 типа К53-1, С8-С15 - К73-17 на номинальное напряжение 400 В, другие конденсаторы - КМ-5, КМ-б. Выбор стабилитрона VD1 определяется предъявляемыми требованиями по стабильности. Диод VD2 любой кремниевый маломощный, а диоды умножителя напряжения (VD3VD10) типа КД104А. Микросхему К561ЛА7 можно заменить на К561ЛЕ5, КР1561ЛА7, КР1561ЛЕ5 или на аналогичные из серии 564.

Транзистор VT1 должен быть высокочастотным или среднечастотным, с допустимым напряжением коллектор-эмиттер не менее 50 В и напряжением насыщения не более 0,5 В при токе коллектора 100 мА. Для ускорения выхода среднечастотного транзистора из насыщения при выключении емкость конденсатора С6 следует увеличить.

Операционный усилитель К140УД6 (DA1) можно заменить на КР140УД6 без изменения рисунка печатных проводников платы или на любой другой с полевыми транзисторами на входе. Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К20х12х6 из феррита М1500НМЗ. Первичная обмотка содержит 35 витков, а вторичная - 220 витков провода ПЭЛШО 0,2. С целью уменьшения межобмоточной емкости провод вторичной обмотки следует укладывать одним толстым слоем, постепенно смещаясь по магнитопроводу, при этом первый и последний витки должны оказаться рядом.

Первичная обмотка однослойная, ее наматывают поверх вторичной. Полярность подключения выводов обмоток роли не играет.

Настраивать преобразователь следует в таком порядке. Отключить первичную обмотку трансформатора от транзистора, а верхний (по схеме) вывод резистора R3 соединить с минусовым выводом источника питания через два резистора с общим сопротивлением 140 кОм. При вращении движка подстроечного резистора R6 коэффициент заполнения импульсов на выходе элемента DD1.4 (контролировать осциллографом или вольтметром постоянного напряжения, включенным между выходом этого элемента и общим проводом) должен скачком изменяться от минимального (примерно 0,1 или импульсы могут исчезать полностью) до максимального (0,65).

Движок подстроечного резистора зафиксировать в положении возникновения этого скачка. Затем полностью смонтировать преобразователь, подключить к его выходу вольтметр с входным сопротивлением не менее 10 МОм и включить питание. Выходное напряжение можно контролировать таким же вольтметром и по напряжению на резисторе R3 (5 В) или микроамперметром, включенным последовательно с этим резистором (50 мкА). Далее подстроить резистором R6 выходное напряжение преобразователя и проверить стабильность его работы при изменении нагрузки и напряжения источника питания. Для уменьшения помех, излучаемых преобразователем, он помещен в латунный корпус.

Для большего подавления помех во вторичную цепь преобразователя можно включить простейший RC-фильтр, а в первичную дроссель ДМ-0,1 индуктивностью 400 мкГн и проходной конденсатор. Описанный преобразователь рассчитан на работу от стабилизированного источника питания 12 В, у которого с общим проводом соединен плюсовой вывод. Но без каких-либо изменений в монтаже с общим проводом можно соединить минусовый вывод источника питания.

В порядке эксперимента испытан вариант преобразователя с питанием от двуполярного источника ±12 В. Основная его часть собрана по такой же схеме, конденсатор С1 (на номинальное напряжение 30 В) вдвое меньшей емкости включен между цепями +12 и -12 В, нижние (по схеме) вывод резистора R14 и вывод первичной обмотки трансформатора Т1 подключены к цепи 4-12 В. Номиналы замененных элементов: R13 - 1,1 кОм; С6 - 1600 пФ; С7 - 430 пФ; R14 - 2 кОм. Транзистор VT1 КТ815Г. Число витков первичной обмотки трансформатора Т1 увеличено в два раза.

Если использовать нестабилизированный источник питания, то коэффициент стабилизации цепи R4VD1 может оказаться недостаточным. В этом случае цепь питания стабилитрона следует выполнить по схеме, приведенной на рис.3.

Преобразователь напряжения 12-1000 вольт

Светодиод HL1 будет выполнять функцию индикатора включения питания.

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Передача оптической связи без проводов на большие расстояния 07.01.2023

Многие годы идея 6G считалась немыслимой, но доцент Хосеп Жорнет из Северо-Восточного университета в США смог добиться невозможного, пишет Techexplore.

Основа связи нового поколения - терагерцовая частота. Благодаря помощи НАСА, ВВС США и компании Amazon ученые смогли доказать, что передача данных на частоте более 100 гигагерц вполне реальна. Раньше все пиралось в 5G и его частоту 71 гигагерц.

Но оставалась главная проблема - передать данные на большом расстоянии не удавалось, ведь чем выше частота, тем меньше расстояние можно передавать сигналы. Выходило, что даже в лабораторных условиях удавалось передать сигнал на расстояние вытянутой руки, и практического применения такая технология не имела.

Но Жорнет и его команда не сдавались. С помощью разнообразных экспериментов и работой со специальными микшерами сигналов они вводили информацию прямо в сам источник сигнала. Но на другом конце получали "информационную кашу", потому что сигнал очень искажался. Тогда ученые нашли элегантное и творческое решение - они исказили сигнал и на выходе смогли получить его в чистом виде на расстоянии в два километра.

Команда ученых провела четыре напряженных дня на базе ВВС США, чтобы установить междугороднюю терагерцевую связь, и на следующий день они смогли отправить и восстановить информацию без ошибок. Система, разработанная Жорнетом и его сотрудниками, достигла частот и пропускной способности, затмивших сети 5G более чем "на два порядка".

Правда, пока не все так идеально. Два километра - просто космическое расстояние по сравнению с тем, что было вначале, но для четкой и быстрой передачи сигнала все еще нужна прямая видимость и отсутствие помех городской или сельской застройки.

Но Жорнет утверждает, что проще поставить вышку, чем бороздить поля и луга фермеров, прокладывая оптоволокно.

Ученый уверен, что даже до того, как 6G станет доступным в мобильных телефонах, терагерцовый диапазон будет играть большое значение в коммуникационной инфраструктуре. Новый стандарт поможет сократить цифровое неравенство между жителями мегаполисов и сельскими жителями, не имеющими доступа к быстрому оптоволоконному интернету.

Другие интересные новости:

▪ POS-терминал c биометрической идентификацией

▪ Компания NXP повысит безопасность электронных паспортов

▪ MOSFETs для индустриальных применений

▪ Наушники-алкотестер

▪ Нанотрубочки отталкивают воду

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Автомобиль. Подборка статей

▪ статья Омар Хайям. Знаменитые афоризмы

▪ статья Как ест земляной червяк? Подробный ответ

▪ статья Работа на цифровых печатных машинах типа XEIKON-DCP/32 D и др.. Типовая инструкция по охране труда

▪ статья Солнечные печи. Энциклопедия радиоэлектроники и электротехники

▪ статья Электрическая волна. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026