Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Импульсный блок питания к паяльнику с термостатом. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Пайка электропаяльником была и остается, пожалуй, самой распространенной операцией в работе радиолюбителя. Температура жала, ее регулировка и стабильность, скорость нагрева паяльника - вот главные параметры, которые определяют качество пайки и удобство в работе.

В радиолюбительской литературе [1,2] уже описывались конструкции паяльников и блоков питания к ним, в которых датчиком температуры жала является термопара. Все они заслуживают внимания, имеют свои преимущества и недостатки.

Электропаяльник, описанный в [1], хотя и соединяется с блоком питания двухпроводным кабелем, не может обеспечить максимальной стабильности температуры, поскольку термопара не имеет непосредственного контакта с жалом паяльника.

Блок питания в целом получается довольно сложным: только в электронном регуляторе используется 5 интегральных микросхем, кроме того, нужно обеспечить 3 напряжения питания, два из которых должны иметь хотя бы простейшие стабилизаторы.

Более удачная конструкция предложена в [2]. Благодаря нетрадиционному включению операционного усилителя (без ООС, питание пульсирующим напряжением), автору удалось свести к минимуму количество деталей в блоке питания. Простой, но надежной оказалась конструкция паяльника. Все это немаловажно для начинающего радиолюбителя. Тот, кто имеет некоторый опыт конструирования импульсных блоков питания, может изготовить электронный блок с широтноимпульсным (ШИ) регулированием мощности паяльника. Из-за отсутствия низкочастотного трансформатора блок питания имеет меньшие массу и габариты. Кроме того, в отличие от описанных ранее конструкций, работающих по принципу "периодический нагрев - охлаждение" здесь используется плавное изменение мощности с помощью ШИ регулирования, благодаря чему отсутствуют периодические колебания температуры.

Схема блока питания паяльника изображена на рис.1. Для удобства в ней можно выделить два функциональных узла: аналоговый и цифровой.

Импульсный блок питания к паяльнику с термостатом
(нажмите для увеличения)

Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1.

Выводы термопары паяльника подключают в указанной полярности к контактам 1-2 разъема X1 через резисторы R5, R6 к входам ОУ. Делитель R2, R3 создает искусственный корпус - аналоговый общий провод. При равенстве пар резисторов R4, R9 и R5, R6 коэффициент усиления определяется отношением R4/R5 или R9/R6. Сигнал с выхода DA1 через фильтр НЧ R14 С10 R15 подается на эмиттер транзистора VT3, на его базу подается опорное напряжение, снимаемое с движка резистора R19. При указанных на схеме номиналах резисторов R18-R20 опорное напряжение можно изменять с 3,8 до 11,2 В (относительно вывода 4 DA1).

Примерно в таких же пределах должен изменяться усиленный сигнал термопары на выводе 6 DA1 при изменении температуры паяльника в диапазоне задаваемых температур. Для этой цели используют балансировку ОУ с помощью выводов 1 или 5 (в данном случае вывод 1). Для устойчивости усилителя и устранения наводок со стороны преобразователя напряжения служат конденсаторы С2-С5, С8, С9. Они сужают полосу усиливаемых частот "сверху", улучшают ослабление синфазного сигнала, но не влияют на коэффициент усиления, так как схема является усилителем постоянного тока (строго говоря, усилителем медленно меняющегося тока).

Работу цифрового узла - схемы формирования ШИ сигнала - рассмотрим с помощью упрощенных осциллограмм, изображенных на рис.2.

Импульсный блок питания к паяльнику с термостатом

Генератор прямоугольных импульсов (рис.2,а) собран на логических элементах DD1.1, DD1.2. Частота импульсов определяется элементами R1, С1 и при настройке устанавливается около 40 кГц. По фронту каждого импульса, поступающего на тактовый вход триггера DD2.1, последний переключается в единичное состояние (на выводе 13 - высокий уровень, на выводе 12 - низкий). С этого момента начинается заряд конденсатора С7 через R12, R16, VT2. Когда напряжение на С7 достигнет порога сброса триггера по входу R, DD2.1 переключится в нулевое состояние, и напряжение высокого уровня на выводе 12 откроет транзистор VT1, который быстро разряжает конденсатор С7. Цепочка R8С6 форсирует этот процесс. Время зарядки С7, а значит, и ширину формируемых триггером импульсов регулирует транзистор VT2.

На рис.2,б кривая 1 изображает выходное напряжение усилителя термопары (вывод 6 DA1), прямая линия 2 соответствует напряжению на движке резистора R19. В начальный период времени, когда холодный паяльник включен в сеть, его температура непрерывно растет, а напряжение усилителя DA1 уменьшается. Когда это напряжение становится на 1-1,2 В меньше опорного напряжения, установленного на движке резистора R19, транзистор VT3 открывается. Ток коллектора VT3 является током базы транзистора VT2, который, открываясь во время действия высокого уровня напряжения на выводе 13 DD2.1, увеличивает скорость зарядки конденсатора С7 до порогового напряжения (рис.2,в). При этом импульсы, формируемые триггером DD2.1, становятся короче (рис.2,г). Эти импульсы с выхода 13 DD2.1 поступают на входы элементов 2И-НЕ DD1.3 и DD1.4. Импульсы с выхода 12 DD2.1 подаются на делитель DD2.2.

Поделенные на 2 противофазные сигналы поступают на другие входы элементов DD1.3, DD1.4. Работу схемы иллюстрируют соответствующие осциллограммы рис.2, снятые относительно вывода 7 цифровых ИМС DD1, DD2, кроме последней осциллограммы. На рис.2,к показана форма напряжения, приложенного к обмотке 1-2 трансформатора Т1. Импульсы чередующейся полярности с паузами между ними через Т1 прикладываются к базам ключевых транзисторов VT4 и VT5 полумостового преобразователя и поочередно открывают их. Как видно из рис.2, при нагревании паяльника паузы между импульсами минимальны (они нужны для устранения сквозного тока VT4, VT5), а мощность, выделяемая нагревательным элементом, наибольшая. Как только жало паяльника нагрелось до установленной температуры, паузы увеличиваются, импульсы на столько же укорачиваются, в результате чего мощность уменьшается, а температура стабилизируется.

Вся схема питается от выпрямленного напряжения 220 В, проходящего через фильтр L1 L2 С17 С18. Нагревательный элемент паяльника подключается к обмотке 3-4 трансформатора Т2. Для гальванической развязки термопары также используется отдельная обмотка 1-2. Напряжение этой обмотки выпрямляется мостом VD4, заряжает конденсатор С13 до напряжения, близкого к амплитуде импульсов и мало зависящего от их ширины. Питание на микросхемы подается от С13 через параметрический стабилизатор R21 VD3.

Для запуска преобразователя нужно кратковременно нажать кнопку SA1. При этом напряжение 300 В с конденсатора С16 через токоограничительные резисторы R22, R26 подключается к стабилитрону VD3, подавая начальное напряжение питания микросхемам. Преобразователь, запустившись, обеспечивает питание схемы с обмотки 12 Т2 после отпускания кнопки SA1. Хотя R23, R26 обеспечивают электробезопасность, следует избегать касания жала паяльника и одновременного нажатия на кнопку запуска. После отпускания последней паяльник имеет полную гальваническую развязку от сети. К обмотке 12 трансформатора Т2 через R22 подключен светодиод HL1, он не только сигнализирует о включении паяльника, но и служит своеобразным индикатором режима работы термостабилизатора: при включении паяльника светодиод загорается с наибольшей яркостью (мощность максимальна), при нагреве жала до температуры стабилизации яркость свечения слегка уменьшается, сигнализируя о готовности паяльника к работе.

В устройстве можно применить резисторы МЛТ, указанной на схеме мощности. R19 - любой малогабаритный переменный. Следует учесть, что зависимость температуры от угла поворота ручки R19 будет такой же, как сопротивления, поэтому, если желательна линейная шкала температуры, используют резистор группы А. Конденсаторы С14, С15, С17, С18 типа K73-17; С12, С13, С16 - K50-27, К50-29, К50-35. Остальные - керамические. Транзисторы VT4, VT5 можно заменить на КТ858А, КТ859А, КТ872А и другие высоковольтные, микросхемы К561ЛА7, К561ТМ2 - на соответствующие им из серий 564, 164. Переключатель SA1 - любой малогабаритный без фиксации. Катушки L1, L2 намотаны на тороидальном магнитопроводе К16х10х4,5 из феррита марки М2000HM1 и содержат 20 витков сложенного вдвое провода ПЭЛШО-0,25.

Для трансформатора Т1 использован такой же сердечник, что и в L1, L2. Обмотка 1-2 содержит 150 витков провода ПЭЛШО-0,15, обмотки 3-4, 5-6 - по 14 витков ПЭЛШО-0,25. Трансформатор Т2 намотан на кольце К28х16х9 из феррита М2000HM1. Сначала наматывают обмотку 5-6 - 230 витков провода ПЭЛШО0,25. Обмотка 1-2 содержит 53 витка ПЭЛШО-0,15. Последней наматывают обмотку 3-4 проводом ПЭВ-2 1,0. Для паяльника с сопротивлением нагревательного элемента 15 Ом обмотка 3-4 содержит 42 витка, а максимальная мощность получается около 40 Вт. Чтобы от изготовленного блока можно было питать паяльники с другим сопротивлением нагревателя, обмотку 3-4 выполняют с отводами.

Конструкция блока питания произвольная. Все зависит от вкуса и способностей радиолюбителя. Мне удалось разместить устройство в корпусе размером 85х80х20 мм, склеенном из полистирола и закрывающемся металлической крышкой. Монтаж получился очень плотный - печатнонавесной. Электронный блок был предварительно собран, налажен и испытан на макетной плате.

Паяльник можно изготовить по технологии, описанной в [2]. Правда, на мой взгляд, выбор стойки-токоподвода электролампочки для изготовления термопары не совсем удачен: провод там слишком толстый и длина его недостаточна. Для этой цели удобнее использовать провод диаметром 0,2-0,3 мм.

Для налаживания устройства внешний источник постоянного тока 30-35 В подключают к конденсатору С13 ("плюс" источника - к "плюсу" С13), термопару паяльника - к гнездам 1-2 (в указанной полярности) разъема X1. Для регулировки температуры паяльника на его нагревательный элемент подают напряжение с ЛАТР. Сначала проводят балансировку ОУ резистором R11 и при необходимости корректировку коэффициента усиления подбором резисторов R5 и R6, сохраняя их равенство. При правильно установленном режиме напряжение на выводе 6 относительно вывода 4 DA1 изменяется с 10-11 В (при минимальной температуре жала паяльника) до 3-4 В (при максимальной). Для определения температуры можно, например, использовать плавление полиэтилена (нижний предел) и свинца (верхний). Далее с помощью осциллографа проверяют наличие в характерных точках соответствующих осциллограмм (рис.2). Особое внимание следует обратить на ширину импульсов (рис.2,д), которая соответствует защитному интервалу t3 - промежутку времени, когда транзисторы VT4 и VT5 закрыты, t3 устанавливают равным 4-5 мкс при холодном паяльнике подбором R16.

В заключение внешний источник питания отключают от С13, нагреватель паяльника подключают к гнездам 3-4 разъема X1 и, включив блок питания в сеть, запускают его нажатием кнопки SA1, при этом должен загореться светодиод HL1. Отвод обмотки 3-4 Т2 подбирают так, чтобы паяльник нагревался до рабочей температуры за 30-50 с, а блок питания находился в режиме стабилизации температуры в любом положении ручки регулятора R19. Убедиться в этом можно так. В установившемся режиме поворачивают ручку регулятора температуры на небольшой угол в одну, а затем в другую сторону, при этом яркость свечения светодиода в одном случае должна заметно уменьшаться, в другом увеличиваться.

Разместив устройство в корпусе, градуируют шкалу регулятора температуры.

Литература:

  1. Кузичев Л. Термостабилизатор для электропаяльника // Радио.1985.-№3.-С.26, 27.
  2. Коноплев И. Электропаяльник с термостабилизатором // Радио.1995.-№2.-С.38-40.

Автор: И.Н.Танасийчук

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Биополимеры против нефтепродуктов 16.12.2015

Благодаря использованию биологических материалов, которые заменили нефтяное сырье, компании Ford удалось существенно снизить загрязнение окружающей среды, сэкономить на производстве и уменьшить вес автомобилей.

Одной из главных задач автомобильной отрасли, концерн Ford считает заботу об окружающей среде. Применение воспроизводимых природных материалов и переработанного сырья позволило добиться значительных результатов в отношении снижения выбросов углекислого газа и экономии нефти, которые затрачиваются, например, на создание интерьера салона. Кроме того, автопроизводитель сохраняет примерно 10 млн. долларов в год, используя переработанные материалы.

Майра Магнани, специалист по работе с биологическими материалами рассказала нам, как рециркуляция природных материалов используется в создании автомобилей Ford. Например, на один автомобиль требуется около 70 кг резины. Корни одуванчика в этом плане являются натуральным источником для получения латекса.

Соевые бобы применяются при изготовлении подушек, подголовников и спинок сидений, а также обивки крыши. Впервые соя была применена для изготовления сидений в модели Ford Mustang в 2008 году. На каждый "Форд", построенный в Северной Америке, уходит 31 251 соевый боб. Использование этого продукта уменьшает выбросы углекислого газа более чем на 9 млн. кг. в год и экономит 2,3 млн. кг. нефти.

Пшеничная солома используется при изготовлении пластика. "Соломенный пластик" применяется, например, для создания систем хранения внутри салона Ford Flex. Его использование позволяет экономить на производстве 9000 кг. нефти и сокращает выброс углекислого газа на 13 500 кг. в год. Кроме того, применение нового пластика позволяет уменьшить вес автомобиля для большей экономии топлива.

Полиактидный полимер (PLA), применяемый при изготовлении ковриков, обивки и отделки салона автомобиля, создан на 100% из кукурузы и имеет ряд преимуществ по сравнению с пластиком на нефтяной основе. Во-первых, "кукурузный полимер" дешевле и экологичнее, а во-вторых - является биоразлагаемым (в срок от 90 до 120 дней).

Другие интересные новости:

▪ Сенсоры с жидкими кристаллами, меняющими цвет

▪ Компактный игровой ноутбук Razer Blade

▪ С возрастом люди становятся более милосердными

▪ Миниатюрный окислительно-восстановительный проточный источник питания

▪ Саундбары Yamaha YAS-109 и YAS-209

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Гражданская радиосвязь. Подборка статей

▪ статья Соединение концов пневмошланга. Советы домашнему мастеру

▪ статья Какие страны мира входят в первую десятку стран с наименьшей плотностью населения? Подробный ответ

▪ статья Кашель. Медицинская помощь

▪ статья Система дистанционного автозапуска двигателя по мобильному телефону. Энциклопедия радиоэлектроники и электротехники

▪ статья Фазовый регулятор мощности. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026