Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Доработка регулятора мощности настольного светильника. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Приставка предназначена для настольных светильников (например, "Карпаты"), обеспечивающих местное освещение рабочей поверхности стола и имеющих вмонтированный в корпус регулятор мощности (на рис.1 изображена тонкими линиями). Мощность в светильнике можно регулировать изменением порога открывания тиристора, который управляется транзисторами VT1, VT2, представляющими собою аналог однопереходного транзистора. В цепи транзисторов включены резисторы R6 и R7. Резистор R6 предназначен для плавной регулировке мощности лампы накаливания светильника.

Схема регулирования мощности питается от двухполупериодного выпрямителя, собранного на диодах VD1...VD4, напряжение на выходе которого стабилизировано стабилитроном VD6. На элементах C1, C2, L1 собран сетевой фильтр. Вся электронная часть регулятора выполнена методом печатного монтажа и смонтирована в основании светильника.

Доработка регулятора мощности настольного светильника
(нажмите для увеличения)

Длительный опыт эксплуатации такого светильника выявил его недостаточную надежность, которая проявляется в том, что регулятор мощности не обеспечивает защиту лампы накаливания в момент включения на полную мощность, когда нить накала лампы холодная и имеет малое сопротивление. В результате сильный брусок тока при включении приводит в негодность не только лампу накаливания, но и диоды VD1...VD4 типа Д226Б двухполупериодного выпрямителя регулятора мощности.

Повысить надежность регулятора мощности светильника можно, установив более мощные диоды типа КД202М или Д247, но в этом случае возникают трудности с их размещением и креплением на существующей печатной плате, да и защита лампы накаливания все равно при ее включении на полную мощность не обеспечивается. А сегодня, как известно, лампы накаливания существенно подорожали, и проблема их долговечности довольно актуальна. Решить ее при наличии регулятора мощности в светильнике можно относительно просто, если обеспечить плавное открытие тиристоpa VD5. Это приведет к постепенному увеличению напряжения на лампе накаливания от единиц вольт и практически до номинального, что, естественно, исключит бросок тока через лампу в момент включения, а следовательно, и выход ее из строя.

Такое плавное открытие тиристоpa VD5 можно обеспечить предлагаемой к промышленному регулятору мощности приставкой (схема показана на рис.1 утолщенными линиями). Она состоит из шести основных элементов транзистора VT3, резисторов R8...R10, конденсатора С4, диода VD7. Приставка присоединяется к регулятору мощности светильника в трех точках и не требует никакой переделки существующей схемы регулятора мощности.

Не останавливаясь на работе регулятора мощности светильника, рассмотрим работу самой приставки. Предположим, что подвижной контакт резистора R6 находится в крайнем нижнем положении, т.е. резистор выведен. В этом случае при включении выключателя SА1 лампы накаливания начинает заряжаться конденсатор С4 через резистор R10, и напряжение на базе транзистора VT3 плавно увеличивается. В результате транзистор приоткрывается и сопротивление его коллекторного перехода постепенно уменьшается, что равносильно автоматическому плавному перемещению движка резистора R6 из крайнего верхнего положения в крайнее нижнее. А это означает (в соответствии с работой схемы регулятора мощности) постепенное открытие тиристора VD5 и плавное возрастание напряжения на лампе EL1 до наибольшего значения, которое обеспечивается данным регулятором мощности. При других положениях движка резистора R6 напряжение на лампе EL1 при ее включении будет плавно возрастать до установленного значения.

После выключения лампы накаливания выключателем SА1 конденсатор С4 разряжается через резисторы R4, R5 диод VD7, и схема готова к повторному включению лампы EL1. Полное время готовности составляет 7... 10 с, хотя повторное включение можно осуществлять и через более короткий промежуток времени.

Диод VD8 устраняет кратковременную незначительную вспышку лампы при ее включении из-за явления самоиндукции, которое имеет место в катушке L.

Детали. В приставке использованы резисторы типа МЛТ-0,25, транзистор VT3 типа КТ502 с любым буквенным индексом, можно использовать транзисторы серий КТ313А, Б, КТ361 (А...Д). Диод VD7 типа Д311А можно заменить на диоды Д311, Д311Б, Д312, Д312А, Б, Д310. В качестве шунтирующего диода VD8 типа КД10ЗА подойдут и другие того же типа, например, КД103Б,КД102А, Б или КД105 с любым буквенным индексом.

Все основные детали приставки смонтированы на монтажной планке (рис.2), которую устанавливают на печатной плате регулятора мощности параллельно конденсатору сетевого фильтра С1 и крепят к ней двумя винтами. Порядок подключения приставки к регулятору мощности следующий. От верхнего вывода резистора R6, который соединен с подвижным контактом, отпаивают проводник, соединяющий его с дорожкой печатной платы регулятора мощности. Вместо этого проводника припаивают к подвижному контакту резистора R6 вывод от клеммы 3 монтажной планки. Вывод от клеммы 1 монтажной планки припаивают к дорожке печатной платы регулятора мощности, с которой соединен катод стабилитрона VD6, предварительно просверлив отверстие в ней для соединяющего проводника. Таким же образом присоединяют вывод от клеммы 5 монтажной планки к аноду стабилитрона VD6. Выводы диода VD8 припаивают непосредственно к площадкам фольги, с которыми соединены выводы катушки L.

Доработка регулятора мощности настольного светильника

Наладка приставки. К дорожкам печатной платы регулятора мощности, к которым присоединена лампа ЕL1, подключают авометр. Вместо резисторов R8 и R9 припаивают переменные резисторы на 250 и 100 кОм соответственно, предварительно установив их рукоятки в среднее положение. Движок резистора R6 устанавливают в крайнее нижнее положение. Включают лампу EL1 выключателем SА1, и, после того как яркость ее свечения установится изменением величины переменных резисторов R9 и R8, добиваются наибольшего напряжения на лампе, которое должно составлять около 210... 213 В. После чего вилку шнура питания регулятора мощности отключают от сети, выпаивают переменные резисторы и измеряют их сопротивления подбирают постоянные резисторы такой же величины и впаивают их в монтажную планку. На этом наладка приставки заканчивается.

Отлаженная приставка обеспечивает выход на "орбиту" лампы накаливания в течение около 10 с при емкости конденсатора С4, равной 500 мкФ. В первый момент после включения лампы яркость ее свечения нарастает довольно быстро, а затем, из-за "насыщения" конденсатора, нарастание яркости замедляется. Время готовности схемы к повторному включению лампы накаливания, как отмечалось выше, составляет около 10 с.

Предлагаемая приставка продлевает "жизнь" лампе накаливания, избавляет пользователя светильником от излишних хлопот и расходов, связанных с приобретением и заменой сгоревшей лампы, ремонтом самого светильника по замене вышедших из строя диодов мостовой схемы регулятора мощности.

Практическая реализация данного решения осуществлена в настольном светильнике "Карпаты", который эксплуатируется автором на протяжении одного года. На протяжении всего этого времени никаких сбоев в работе приставки и отказов элементов схемы регулятора мощности и лампы накаливания не наблюдалось. VD5* - обозначение по паспорту регулятора мощности.

Конденсатор С4 - электролитический типа К50х16 на 500 мкФ и 6,3 В. Возможно использование конденсатора меньшей емкости, например, на 330 мкФ, что несколько сократит время разогрева нити накала лампы EL1.

Автор: К.В. Коломойцев

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Брокколи против тромбов 07.03.2024

Химическое вещество сульфорафан, содержащееся в брокколи, оказывает благоприятное воздействие на предотвращение образования тромбов в крови. В отличие от других средств против тромбов, сульфорафан не увеличивает риск кровоизлияний у мышей. Ученые надеются, что это вещество может быть полезным в лечении и профилактике инсульта.

Открытие о благоприятном влиянии сульфорафана на профилактику тромбозов открывает новые перспективы в области борьбы со смертельными сердечно-сосудистыми заболеваниями. Однако требуются дополнительные исследования для понимания механизмов действия вещества и его потенциального применения у людей.

В ходе исследования ученые анализировали 23 химических соединения, часто встречающихся в растительных продуктах, так как многие из них проявляют биологическую активность, включая воздействие на свертываемость крови. В лабораторных условиях, схожих с окружающей средой артерий, было обнаружено, что сульфорафан замедляет агрегацию тромбоцитов, что может предотвратить образование тромбов, способных вызвать инсульт или инфаркт.

Ученые предполагают, что сульфорафан может быть эффективным как в предотвращении инсульта, так и в уменьшении его последствий. В отличие от существующего препарата для лечения последствий инсульта, который эффективен лишь у небольшой части пациентов, сульфорафан в экспериментах на мышах оказался действенным у 60 процентов испытуемых.

Однако перед тем, как внедрять препарат на практике, необходимо провести дополнительные исследования, чтобы выяснить его эффективность и безопасность для человека. Также следует изучить, будет ли диета, богатая брокколи, полезной для людей с повышенным риском тромбообразования.

Другие интересные новости:

▪ Мониторы ViewSonic VX2462-2K-MHDU, VX2762-2K-MHDU и VX2762-4K-MHDU

▪ Красное вино предохранит от простуды

▪ Бумажный самолетик с лазерным двигателем

▪ Перекличка в операционной

▪ Сколько в мире компьютеров

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Устройства защитного отключения. Подборка статей

▪ статья Неведомому богу. Крылатое выражение

▪ статья Какой награды был удостоен Гагарин сразу после первого космического полета? Подробный ответ

▪ статья Чилибуха. Легенды, выращивание, способы применения

▪ статья Цветомузыкальная установка с двухступенчатым управлением яркостью. Энциклопедия радиоэлектроники и электротехники

▪ статья RDS - структура сигнала. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025