Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Регенерация гальванических элементов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Гальванические элементы, предназначаемые для питания электронных часов и калькуляторов (так называемые "таблеточные"), уже не являются дефицитом. Но все же порой возникает проблема продления срока их службы или восстановления работоспособности. Именно на такие случаи и рассчитано описываемое здесь устройство. Схема зарядного устройства приведена на рис.1. Работает оно по известному принципу - зарядка восстанавливаемого гальванического элемента асимметричным током.

Зарядный ток элемента G1, подключенного к контактам X2 и X3, протекает через диод VD4. Среднее значение этого тока определяется в основном номиналами резисторов R2, R3 и в нашем случае не превышает 2.5...3 мА. А разрядный ток элемента, текущий через резистор R1 и открывшийся в обратном направлении светодиод HL2, равен примерно 0,15 мА.

Индикаторами состояния восстанавливаемого элемента служат светодиоды HL1 и HL2, ограничителями степени его зарядки - диоды VD1-VD3.

Зарядка элемента происходит во время положительного полупериода сетевого напряжения. Если элемент сильно разряжен, то напряжение на нем не превышает, как правило, 1 В. Поэтому напряжение на последовательно включенных диоде VD7 (0.7 В), светодиоде HL2 (2 В) и элементе G1 будет 3.7...4 В. В то же время суммарное напряжение на последовательно соединенных диодах VD1, VD2, VD3 (по 0.7 В) и светодиоде HL1 (2 В) составит примерно 4.1 В. Это означает, что ток в этом случае станет протекать (в основном) через элемент, и светодиод HL2 будет светиться значительно ярче, чем светодиод HL1. А поскольку они разного цвета свечения, то легко определить, в каком состоянии находится элемент. В данном случае ярче должен светиться светодиод HL2 - зеленый.

По мере восстановления элемента напряжение на нем станет повышаться, а это значит, что теперь большая часть тока потечет через светодиод HL1, его яркость свечения начнет возрастать, а яркость светодиода HL2, напротив, ослабевать. К концу цикла регенерации элемента яркость красного светодиода возрастает, а зеленый будет светиться еле-еле. В принципе, длительность цикла восстановления работоспособности элемента может быть и сколь угодно большой - опасаться выхода элемента из строя не стоит, так как зарядный ток, текущий через него, мал.

Конструируя такое устройство, основное внимание следует уделить безопасности - ведь восстанавливаемый элемент гальванически связан с сетью. Возможная конструкция и монтаж деталей предлагаемого устройства для регенерации элементов питания электронных часов показаны на рис. 2. Его цилиндрическим корпусом, защищающим пользователя от поражения напряжением сети или разрушения элемента (редко, но случается!), служит пластмассовый контейнер из-под лекарства с внутренним диаметром 20 и глубиной 48 мм. Подойдет, конечно, другой подходящий по размерам корпус, но обязательно из изоляционного материала, например, контейнер из-под фотопленки. В таком случае надо будет соответственно скорректировать размеры печатной платы и вставки с контактами для регенерируемого элемента.

Печатная плата выполнена из двустороннего фольгированного стеклотекстолита толщиной 2 мм. Она должна плотно входить в корпус и надежно задерживаться в нем. В донной части корпуса делается отверстие для сетевого провода, длина которого всего несколько сантиметров. Так сделано специально, чтобы было удобно устанавливать элемент в устройство, когда вилка провода (X1) вставлена в розетку сети. В боковой стенке корпуса, в соответствии с расположением светодиодов, просверливают два смотровых "окна" диаметром 4 мм.

Основой контактов X2 и X3, фиксирующих восстанавливаемый элемент, служит вставка диаметром 20 мм из одностороннего фольгированного стеклотекстолита толщиной 2 мм. В ней выпилено овальное отверстие размерами 9x13 мм и просверлено отверстие диаметром 2 мм для винта (или заклепки) пружинящего контакта X2. Функцию контакта выполняет пластинка диаметров 20 мм из луженой фольги или жести, припаянная к фольгированной стороне вставки. Этой пластиной вставка припаяна к токонесущей площадке на печатной плате, с которой соединен анодный вывод светодиода HL2. Так образован минусовый контакт для восстанавливаемого элемента. Плюсовой контакт (X2), вырезанный из латуни, должен с небольшим усилием вращаться вокруг винта (или заклепки), а с фольгированной стороны соединен с катодным выводом светодиода VD4.

Восстанавливаемый элемент вставляют в овальное отверстие вставки минусовой стороной вниз (в середину или ближе к краю) в зависимости от его габаритов и прижимают пружинным контактом. Затем корпус закрывают пластмассовой крышкой, после чего устройство можно подключать к сети.

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Гигантская свалка в глубинах Средиземного моря 24.03.2025

Средиземное море, знаменитое своими кристально чистыми водами и живописными пляжами, скрывает под собой совсем другую картину. Исследования, проведенные учеными из Университета Барселоны, обнаружили одну из самых высоких концентраций морского мусора в глубоководной впадине Калипсо, на глубине 5112 метров. Эта точка, являющаяся глубочайшей в Средиземном море, раньше считалась местом, где человеческая деятельность не могла нанести вреда.

Исследования проводились с использованием высокотехнологичной пилотируемой подлодки "Limiting Factor", которая позволила ученым достичь дна траншеи Калипсо. Здесь они обнаружили шокирующую картину загрязнения - на морском дне было найдено 167 объектов искусственного происхождения, среди которых пластиковые пакеты, контейнеры для еды, стаканчики, веревки, металлические банки, стеклянные бутылки и бумажные коробки. Эти находки доказывают, что даже самые отдаленные уголки моря не застрахованы от воздействия человеческой деятельности.

Загрязнение в таком удаленном месте, как Глубина Калипсо, может иметь несколько источников. Часть отходов попадает туда из прибрежных районов, где мусор переносится морскими течениями. Другой мусор сбрасывается непосредственно с судов. Профессор Микель Канальс, один из авторов исследования, объяснил, что некоторые отходы, такие как пластик, поступают с побережья, находящегося всего в 60 км от впадины, и могут оставаться на дне, пока не распадутся или не будут похоронены.

Исследователи также нашли доказательства умышленного сброса мусора с судов. "Мы увидели, что отходы сбрасывались с лодок, о чем свидетельствует накопление разных видов мусора, а также почти прямолинейная борозда на морском дне", - отметил профессор Канальс.

Особенности географии впадины Калипсо способствуют накоплению мусора. Глубоководная траншея имеет крутые склоны и плоское дно, размером около 20 на 5 километров. Эти природные характеристики создают условия, при которых мусор задерживается и не движется дальше. Слабые течения на этой глубине составляют всего около двух сантиметров в секунду, что делает его долговечным на морском дне.

Впадина Калипсо действует как естественная ловушка для мусора. Это место становится своего рода кладбищем отходов, которые попадают туда и остаются там на неопределенное время. В этом контексте, профессор Канальс подчеркивает, что "к сожалению, можно с уверенностью сказать, что Средиземное море не имеет ни одного чистого уголка".

Это исследование не является первым свидетельством проблемы загрязнения морского дна. Еще в 1975 году, ученые обнаружили мусор на морском дне в проливе Скагеррак в Северной Атлантике, что подтвердило масштабы проблемы.

Средиземное море особенно уязвимо к загрязнению, и это связано с его географическими и социально-экономическими особенностями. Это замкнутое море, окруженное густонаселенными регионами с интенсивным судоходством и рыболовством. Как отмечает профессор Канальс, именно комбинация этих факторов делает Средиземное море особенно восприимчивым к экологическим угрозам.

Другие интересные новости:

▪ Нейтрино трансформировали

▪ PHILIPS обновил линейку ЖК-телевизоров

▪ Для диагностики достаточно одной капли крови

▪ Samsung Galaxy Tab 3 Lite

▪ Открытие, сделанное голубями

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Акустические системы. Подборка статей

▪ статья Инфекционные болезни. Конспект лекций

▪ статья Где были найдены первые ископаемые? Подробный ответ

▪ статья Водосбор. Легенды, выращивание, способы применения

▪ статья УКВ гетеродин с ФАПЧ. Энциклопедия радиоэлектроники и электротехники

▪ статья Почему летает воздушный змей? Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025