Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Экономичный блок питания. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Уменьшение массы и габаритов и повышение экономичности источников питания является одной из актуальных задач при конструировании современной радиоэлектронной аппаратуры. Наиболее просто эта задача решается заменой традиционного выпрямителя (с сетевым трансформатором и емкостным фильтром) высокочастотным преобразователем с последующим выпрямлением высокочастотного напряжения. Такие источники питания, благодаря тому, что преобразование напряжения происходит на относительно высокой частоте (10...40 кГц), имеют трансформаторы и всю конструкцию значительно меньших размеров и отсюда более высокую удельную мощность, доходящую до 200... 400 Вт/куб.дм, что в несколько раз больше, чем у традиционных блоков питания.

Принципиальная схема такого источника питания изображена на рисунке. На выходе блока получают двуполярное напряжение 2х27 В при токе нагрузки до 0,6 А. Амплитуда пульсаций выходного напряжения при максимальном токе нагрузки не превышает 30 мВ.

Экономичный блок питания
(нажмите для увеличения)

Выпрямитель сетевого напряжения собран на диодах V1-V4. Преобразователь выпрямленного напряжения выполнен на транзисторах V6, V7 и трансформаторах Т1 и Т2, а выпрямитель напряжения повышенной частоты - на диодах V8-V11. Рабочая частота преобразователя напряжения 22 кГц. Конденсаторы С1 и С2 необходимы для защиты питающей сети от помех; возникающих при работе преобразователя. Резисторы R1 и R2 совместно с конденсаторами С3С4 являются первичным фильтром и одновременно делителем напряжения для преобразователя. Цепочка V5. R3, C5, R5 служит для облегчения запуска генератора преобразователя. - Фильтром выпрямленного высокочастотного напряжения служат конденсаторы С6, С7.

Использование двух трансформаторов в преобразователь напряжения позволило увеличить его КПД. В обычных преобразователях с одним трансформатором последний работает в режиме насыщения. В преобразователе с двумя трансформаторами выходной трансформатор Т1 работает в линейном режиме при значительно меньших индукциях, чем в однотрансформаторном преобразователе. Это позволяет уменьшить потери в сердечнике, а следовательно, повысить КПД преобразователя. Насыщающийся трансформатор Т2 рассчитан только на мощность, потребляемую базовыми цепями транзисторов V6 и V7 и поэтому имеет небольшие размеры. В преобразователях с одним трансформатором в момент переключения транзисторов появляется значительный выброс коллекторного тока. В преобразователе с двумя трансформаторами этот выброс практически отсутствует, что значительно снижает так называемые динамические потери и повышает общий КПД преобразователя.

Наличие связи между трансформаторами через обмотки III приводит к тому, что в нужный момент трансформатор Т2 входит в режим насыщения. Это необходимо для того, чтобы выполнялись условия работы преобразователя, о которых было сказано выше. Трансформатор Т2 является коммутирующим элементом, включенным в базовые цепи транзисторов V6 и V7. При насыщении трансформатора Т2 его намагничивающий ток быстро возрастает, вследствие чего возрастает падение напряжения на резисторе R4 я уменьшается напряжение на обмотке III, а следовательно, и на обмотках I и II, что приводит к уменьшению тока базы и выходу открытого транзистора в активную область н переключению транзисторов. Частота переключения определяется временем перемагничивания сердечника насыщающегося трансформатора Т2. Дроссели Др1 и Др2 обеспечивают задержку открывания одного транзистора до тех пор. пока другой полностью не закроется. Это необходимо для устранения сквозных токов и уменьшения потерь при переключении транзисторов.

Обозначение по схеме Обмот-
ка
Число витков, способ намотки Провод Сердечник
Т1 I II lII 160 29+29 5 ПЭВ-2 0.33 ПЭВ-2 0.57 ПЭВ-2 0,33 Тороидальный феррит 200НМ1 32Х16Х8 мм
Т2 I II III 8 8 10 ПЭЛШО 0,28 ПЭЛШО 0.25 ПЭЛШО 0,25 Два кольца ферритовых 016 ВТ 10х6х2 мм
L1, L2 Виток к витку до заполнения ПЭВ.2 0,27 Резистор ВС-0,5 R=100 кОм

Данные трансформаторов и дросселей помешены в таблице. Правильно собранный блок питания налаживания не требует.

Автор: В.Цикульский, г. Тернополь; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Твердотельные батареи Panasonic 04.10.2025

Твердотельные аккумуляторы считаются следующим шагом в эволюции энергосистем: в отличие от традиционных литиево-ионных, они не содержат жидкого электролита, что существенно снижает риск возгорания и утечки. Именно на это делает ставку Panasonic, намереваясь завершить подготовку первых образцов к марту 2027 года, то есть к концу 2027 финансового года. Как сообщил технический директор подразделения Panasonic Energy Сеичиро Ватанабе, после выпуска опытных моделей клиенты проведут тесты, которые могут занять около двух лет, прежде чем начнется полноценное серийное производство. Хотя основным направлением для компании по-прежнему остаются литиево-ионные аккумуляторы, Panasonic стремится использовать свой опыт в сфере электромобильных технологий, чтобы выйти на новые рынки - прежде всего в области роботов и промышленных систем. На этом направлении японская корпорация намерена соперничать с такими компаниями, как TDK, уже закрепившимися в сегменте твердотельных решений. Интерес к новой ...>>

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Случайная новость из Архива

Лазер может подглядывать в замочную скважину 14.09.2021

Способность "заглядывать" внутрь закрытых помещений в течение долгого времени относилась к разряду научной фантастики и всяких "супергеройских" умений. Однако, исследователи из лаборатории Computational Imaging Lab Стэнфордского университета, взяв за основу технологию NLOS (non-line-of-sight imaging), добились того, что единственный луч лазерного света, проникающий в замкнутое помещение, скажем так, через замочную скважину, позволят увидеть все физические объекты, находящиеся в этом помещении.

Технология съемки NLOS является уже достаточно давно известной технологией. На основе этого метода уже были созданы "умные" камеры, способные заглядывать за углы и производить съемку предметов, скрытых какими-либо препятствиями. Однако, большинство предыдущих реализаций технологии NLOS-съемки позволяли увидеть достаточно крупные объекты и ровные поверхности, стен в помещении, к примеру. Технология NLOS является очень перспективной технологией для целого ряда областей. Самоуправляемые автомобили-роботы, к примеру, при помощи такой технологии могут "заглянуть" за углы и распознать потенциальную опасность прежде, чем ее сможет увидеть обычная камера или человек-водитель.

Технология работает следующим образом - лазер излучает серию коротких импульсов определенной длительности, идущих через определенный интервал времени. Свет лазера многократно отражается от поверхностей предметов, в том числе и от скрытых препятствиями, какая-то его часть возвращается назад и улавливается датчиками камеры. Информация о том, сколько времени прошло между подачей начального импульса и регистрацией сигнала отраженного света, обрабатывается при помощи сложных математических алгоритмов, которые воссоздают изображения предметов, не попадающих в поле прямого зрения камеры. Конечные изображения не могут похвастаться высоким качеством и разрешающей способностью, но человек достаточно легко распознает предметы на этих изображениях.

Однако, у существующих реализаций NLOS-технологии имеется ряд серьезных ограничений, качество ее работы очень сильно зависит от площади и отражающей способности поверхности скрытых предметов. Это, и некоторые другие ограничения, делали попытки съемки извне находящегося внутри замкнутого помещения практически невозможным делом до последнего времени.

Метод съемки "через замочную скважину", разработанный в Стэнфорде, получил такое название из-за того, что для его работы необходимо лишь крошечное отверстие, через которое луч лазера может осветить маленькое пятно на противоположной поверхности. Огромное количество фотонов многократно отражается от поверхностей стен и предметов в помещении, но лишь небольшому количеству фотонов удается вернуться назад и попасть на поверхность лавинного фотодетектора, способного регистрировать и измерять время прибытия даже единичных фотонов.

Другие интересные новости:

▪ ДНК вместо жесткого диска

▪ Лавина в батарее

▪ Магнит долбит сталь

▪ Ион-проводящие мембраны из дерева

▪ Мобильный телефон встроен в зубы

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Усилители низкой частоты. Подборка статей

▪ статья О память сердца! Ты сильней рассудка памяти печальной. Крылатое выражение

▪ статья Почему композитор фильма Убить Билла получил всего 1 доллар гонорара? Подробный ответ

▪ статья Врач-лаборант клинико-диагностической лаборатории. Должностная инструкция

▪ статья Сетевой индикатор включения на двухцветном светодиоде. Энциклопедия радиоэлектроники и электротехники

▪ статья Где молоко? Секрет фокуса. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025