Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Тональный генератор для ЭМИ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Музыканту

Комментарии к статье Комментарии к статье

Многоголосные ЭМИ с одним тональным генератором уже зарекомендовали себя как надежные и практичные устройства. Однако зачастую их возможности реализуются далеко не полностью из-за особенностей используемых в них генераторов. Как правило, тональный генератор строят на основе высокостабильного кварцевого резонатора или RC-цепей. В этом случае электронное управление частотой либо исключено, либо крайне затруднено [1].

Описанное ниже устройство - тональный генератор, управляемый напряжением. Управляющий сигнал снимают с различных формирователей и органов управления ЭМИ. Это могут быть генераторы частотного вибрато, огибающей (для автоматического изменения строя), регуляторы глиссандо (скольжения строя) с ручным или ножным (педальным) управлением.

К особенностям генератора следует отнести высокую рабочую частоту. Использование цифровой микросхемы позволило реализовать сравнительно простой и дешевый ГУН с рабочей частотой вплоть до 7,5...8 МГц (рис. 1). Для большинства цифровых генераторов тона с равномерно-темперированной музыкальной шкалой, состоящих обычно из 12 идентичных счетчиков с различными интервальными коэффициентами пересчета, необходима тактовая (ведущая) частота в пределах 1...4 МГц. Поэтому характеристики генератора должны быть такими, чтобы обеспечить необходимую линейность в этих частотных пределах.

Тональный генератор для ЭМИ
Рис. 1

Принцип работы генератора основан на формировании регулируемых по длительности импульсов двумя замкнутыми в кольцо одинаковыми формирователями, управляемыми напряжением. Таким образом, спад импульса на выходе одного формирователя вызывает появление фронта следующего импульса на выходе другого и т. д. Работу устройства иллюстрируют временные диаграммы, показанные на рис. 2.

Тональный генератор для ЭМИ
Рис. 2

До момента t0 управляющее напряжение равно нулю. Это значит, что в точках А и Б установился сигнал с уровнем логического 0, поскольку вытекающий входной ток элементов DD1.1 и DD1.2 (он не превышает примерно 1,6 мА) замыкается на общий провод через резисторы R1 и R2 и малое выходное сопротивление источника управляющего напряжения. На выходе инверторов DD1.1 и DD1.2 в это время действует уровень 1, поэтому RS-триггер на элементах DD1.3 и DD1.4 установится произвольно в одно из устойчивых состояний. Предположим для определенности, что на прямом (верхнем по схеме) выходе установился сигнал 1, а на инверсном - 0.

При появлении в момент t0 на управляющем входе некоторого положительного напряжения через резисторы R1 и R2 потечет ток. При этом в точке А напряжение останется близким к нулю, так как ток через резистор R1 протекает на общий провод через малое сопротивление диода VD1 и выходной цепи элемента DD1.4. В точке Б напряжение будет повышаться, поскольку диод VD2 закрыт высоким уровнем с выхода элемента DD1.3. Ток через резистор R2 будет заряжать конденсатор С2 до 1,1... 1,4 В за время, зависящее от его емкости, сопротивления резистора R2 и значения управляющего напряжения. При увеличении Uynp увеличивается скорость зарядки конденсатора, и он заряжается до того же уровня за меньшее время.

Как только напряжение в точке Б достигнет порога переключения элемента DD1.2, на его выходе установится уровень 0, который переключит RS-триггер. Теперь на прямом выходе будет уровень 0, а на инверсном - 1. Это приведет к быстрой разрядке конденсатора С2 и уменьшению напряжения, а конденсатор С1 начнет заряжаться. В результате триггер снова переключится и весь цикл повторится.

Увеличение управляющего напряжения (период времени t1...t2, рис. 2) приводит к увеличению зарядного тока конденсаторов и уменьшению периода колебаний. Так происходит управление частотой колебаний генератора. Вытекающий входной ток элементов ТТЛ складывается с током источника управляющего напряжения, что позволяет расширить пределы управляющего сигнала, так как при большом сопротивлении резисторов R1 и R2 генерация может сохраняться даже при Uynp=0. Однако этому току свойственна температурная нестабильность, что сказывается на стабильности частоты генерации. В какой-то мере повысить температурную стабильность генератора можно путем использования конденсаторов С1 и С2 с положительным ТКЕ, что будет компенсировать увеличение неуправляемого вытекающего входного тока элементов DD1.1 и DD1.2 при изменении температуры.

Период колебаний зависит не только от сопротивления резисторов R1 и R2 и емкости конденсаторов С1 и С2, но и от многих других факторов, поэтому точная оценка периода затруднена. Если пренебречь временными задержками сигналов в элементах DD1.1-DD1.4 и принять значение их напряжения логического 0, а также порогового напряжения диодов VD1 и VD2 равными нулю, то работу генератора можно описать выражением: T0=2t0=2RC*ln((IэR+Uупр)/(IэR+Uупр-Uсп)), полученным на основе решения дифференциального уравнения:

dUc/dt = Iэ/C + (Uупр-Uс)/(RC),

где R и С - номиналы времязадающих цепей; Uc - напряжение на конденсаторе С; Uсп - максимальное (пороговое) значение напряжения Uc; Uynp - управляющее напряжение; Iэ - среднее значение входного вытекающего тока элемента ТТЛ; t0 - длительность импульса; Т0 - период колебаний. Расчеты показывают, что первая из указанных формул весьма точно согласуется с экспериментальными данными при Uynp>=Uсп, при этом были выбраны средние значения: Iэ=1,4 мА; Uсп = 1,2 В. Кроме того, на основе анализа того же дифференциального уравнения можно прийти к выводу, что

(IэR+Uупр)/(IэR+Uупр-Uсп)>0,

т. е., если IэR/(IэR-Uсп)>0, то устройство работоспособно при Uynp≥0; этот вывод подтверждает и экспериментальная проверка устройства. Тем не менее наибольшая стабильность и точность работы ГУН могут быть достигнуты при Uупр ≥ Uсп = 1,2..1,4 В, т. е. в частотных пределах 0,7...4 МГц.

Практическая схема тонального генератора для полифонического ЭМИ или ЭМС показана на рис. 3. Пределы рабочей частоты (при Uупр ≥ 0,55...8 В) - 0,3...4,8 МГц. Нелинейность характеристики управления (на частоте в пределах 0,3...4 МГц) не превышает 5 %.

Тональный генератор для ЭМИ
Рис. 3 (нажмите для увеличения)

На вход 1 подают сигнал с генератора огибающей для автоматического управления скольжением частоты звука. При незначительной глубине модуляции (5...30 % тона) достигается имитация оттенков звучания бас-гитары, а также других щипковых и ударных инструментов, у которых высота интонирования звуков в момент их извлечения немного отклоняется от нормы (обычно скачком повышается во время атаки звука и далее быстро уменьшается до своего нормального значения).

На вход 2 подают постоянное управляющее напряжение с ручного или педального регулятора глиссандо. Этот вход как раз и служит для подстройки или изменения (транспонирования) тональности в пределах двух октав, а также для скольжения по высоте аккордов или тональных звуков, имитирующих, например, тембр кларнета, тромбона или голоса.

На вход 3 подают от генератора вибрато сигнал синусоидальной, треугольной или пилообразной формы. Переменным резистором R4 регулируют уровень вибрато в пределах 0...+-0,5 тона, а также уровень девиации частоты до +-1 октавы и более при замыкании выключателя SA1. При большой частоте модуляции (5...11) Гц) и глубине +-0,5...1,5 октавы тональные звуки теряют свои музыкальные качества и приобретают характер шумового сигнала, напоминающего глухой рокот или шелест лопастей вентилятора. При малой частоте (0,1...1 Гц) и той же глубине достигается очень красочный и выразительный эффект, подобный "плавающему" звучанию гавайской гитары.

Сигнал с выхода тонального генератора надо подавать на вход цифрового формирователя сигналов равномерно-темперированного музыкального строя.

На операционном усилителе DA1 собран активный сумматор управляющих сигналов. Сигнал с выхода сумматора поступает на вход ГУН, который выполнен на логических элементах DD1.1-DD1.4. Кроме ГУН, устройство содержит образцовый кварцованный генератор, собранный на элементах DD2.1, DD2.2, а также цепь из двух октавных делителей частоты на триггерах микросхемы DD3. тактируемых этим генератором. Генератор и триггеры формируют три образцовых сигнала с частотой 500 кГц, 1 и 2 МГц. Эти три сигнала и сигнал с выхода ГУН поступают на вход электронных ключей, собранных на элементах DD4.1-DD4.4 с открытым коллектором.

Эти коммутаторы, управляемые переключателями SA2-SA5, имеют общую нагрузку - резистор R13. Выходные цепи элементов образуют устройство с логической функцией ИЛИ. Когда один из ключей пропускает на выход свой тактовый сигнал, остальные закрыты низким уровнем с переключателей. Высокий уровень для подачи на R-входы D-триггеров DD3.1 и DD3.2 и на контакты переключателей SA2-SA5 снимают с выхода элемента DD2.4.

Кварцованный генератор с делителями частоты играют вспомогательную роль и служат в основном для оперативной подстройки ГУН или "ведут" инструмент в режиме "Орган", при этом переключатели SA3, SA4, SA5 ("4'", "8'", "16'") позволяют смещать строй ЭМИ соответственно от самого низкого регистра на одну и на две октавы вверх. При этом, разумеется, никакой подстройки или изменения высоты звуков быть не может.

К недостаткам генератора следует отнести сравнительно низкую температурную стабильность, которая в данном случае не имеет большого значения [2], и значительную нелинейность управляющей характеристики ГУН на краях диапазона, особенно в области нижних частот рабочего диапазона генератора.

На рис. 4 показана экспериментально снятая зависимость частоты генерации от управляющего напряжения: 1 - для генератора по схеме рис. 1, 2 - рис. 3.

Тональный генератор для ЭМИ
Рис. 4

Устройство собрано на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Микросхемы серии К155 можно заменить на аналогичные из серий K130 и К133; К553УД1А - на К553УД1В, К553УД2, К153УД1А, К153УД1В, К153УД2. Вместо Д9Б можно использовать диоды этой серии с любым буквенным индексом, а также Д2В, Д18, Д311, ГД511А. Конденсаторы С4 и С5 лучше выбрать с положительным ТКЕ, например. КТ-П210. КПМ-П120, КПМ-П33, КС- П33, КМ- П33, К10-17-П33, К21У-2-П210, К21У-3-П33. Конденсаторы С7, C10, C11 - К50-6.

Особое внимание следует уделить тщательной экранировке устройства. Выходные проводники нужно свить в шнур с шагом 10..30 мм.

Правильно смонтированный тональный генератор в налаживании не нуждается и начинает работать сразу после подключения питания. Управляющее напряжение на входе ГУН не должно превышать 8...8,2 В. На стабильность частоты генератора отрицательно влияют изменения питающего напряжения 5 В, поэтому питать его необходимо от источника с высоким коэффициентом стабилизации.

Литература

  1. В. Беспалов. Делитель частоты для многоголосного ЭМИ. - Радио, 1980, № 9.
  2. Л.А. Кузнецов. Основы теории, конструирования, производства и ремонта ЭМИ. - М.: Легкая и пищевая промышленность. 1981.

Автор: И.Басков, д.Полоска Калининской обл.


Дополнение

Простой, управляемый напряжением генератор, описанный в статье И.Баскова "Тональный генератор для ЭМИ" ("Радио", 1987, № 5, с.48-50), при повторении оказался с существенными недостатками: значительная нелинейность характеристики управления, большая зависимость частоты колебаний от напряжения питания микросхемы и от температуры окружающей среды. Главный же недостаток - генератор плохо возбуждается. Происходит это из-за того, что при включении питания на входах элементов DD1.1 и DD1.2 (см. рис. 1 названной статьи) может одновременно возникать напряжение высокого уровня, а на их выходах - низкого. Напряжение низкого уровня на входах RS -триггера, собранного на элементах DD1.3 и DD1.4, устанавливает и удерживает триггер в таком состоянии, когда на его прямом (вывод 6) и инверсном (вывод 8) выходах высокий уровень, при котором генератор не возбуждается.

Устранить этот недостаток можно включением элементов DD1.1 и DD1.2 также по схеме RS-триггера. Тогда на входах этих элементов не может одновременно установиться напряжение высокого уровня и генератор легко возбуждается.

Схема генератора, обладающего лучшими характеристиками, приведена на рис. 1, а. Элементы DD1.1 и DD1.2, включенные RS-триггером, совместно с конденсаторами С1 и С2 представляют собой генераторы линейно изменяющегося напряжения с емкостной обратной связью. Благодаря обратной связи через конденсаторы С1 и С2 характеристика управления линейна во всем диапазоне генерируемых колебаний. Обратная связь уменьшает и зависимость частоты от напряжения литания микросхемы и от температуры окружающей среды.

Тональный генератор для ЭМИ
Рис. 1

Временные диаграммы, иллюстрирующие работу такого генератора, показаны на рис. 1, б. После включения питания RS-триггер на элементах DD1.3 и DD1.4 установится произвольно в одно из устойчивых состояний. Предположим, например, что на его прямом выходе установился сигнал высокого уровня, а на инверсном - низкого. Следовательно, возможность заряжаться получает только конденсатор С2 и на выходе элемента DD1.2 формируется линейно уменьшающееся напряжение (Uв на рис. 1, б). Когда напряжение в точке В генератора достигнет порога переключения элемента DD1.4, RS-триггер переключится в другое устойчивое состояние. Теперь на его прямом выходе будет сигнал низкого уровня, а на инверсном - высокого, и конденсатор С2 быстро разряжается через диод VD2 и элемент DD1.3.

Аналогично происходит зарядка конденсатора С1. В результате RS-триггер переключится в исходное состояние и весь цикл повторится.

Изменение управляющего напряжения приводит к изменению зарядного тока конденсаторов генератора и периода его колебаний. Так происходит управление частотой колебаний генератора. При изменении управляющего напряжения от 0 до 8 В (R1 = R2 = 2 кОм; C1 = С2 = 150 пФ) частота колебаний будет в пределах 0,25...4 МГц.

Если вместо управляющего напряжения Uупр на резисторы R1 и R2 подать напряжение питания микросхемы, то получится генератор, у которого на прямом и инверсном выходах формируются прямоугольные импульсы, а на выходах элементов DD1.1 и DD1.2 - линейно изменяющееся напряжение с малым коэффициентом нелинейности (UA и UB на рис. 1, б). Минимальная зависимость частоты от напряжения питания микросхемы получится, если сопротивление резисторов R1 и R2 будет около 2 кОм. При изменении напряжения питания на +-5% частота изменяется на +-0,1%. Температурная нестабильность - около 0,05%/°С.

Предлагаемый способ управления частотой (периодом) колебаний генератора можно использовать для регулирования длительности импульсов. На рис. 2, а приведена схема ждущего мультивибратора, длительность выходных импульсов которого регулируют изменением управляющего напряжения Uупр. Работает устройство следующим образом. В исходном состоянии на прямом выходе RS-триггера напряжение низкого уровня, а на инверсном - высокого. Импульсы запуска, являющиеся сигналами низкого уровня, переключают RS-триггер в устойчивое единичное состояние. Конденсатор С1 заряжается. На выходе элемента DD1.1 формируется линейно уменьшающееся напряжение. Когда же оно достигает порога переключения элемента DD1.3, RS-триггер принимает исходное состояние.

Тональный генератор для ЭМИ
Рис. 2

Отличительная особенность данного мультивибратора - возможность формирования импульсов, длительность которых больше периода входных импульсов (t2 - t3 на рис. 2,б). Длительность выходных импульсов зависит от сопротивления резистора R1, емкости конденсатора С1 и значения управляющего напряжения. При изменении управляющего напряжения от 0 до 8 В (R1 = 2 кОм; C1 = 330 пФ) длительность выходных импульсов изменяется в пределах 5...0,2мкс.

Описанные здесь генератор и мультивибратор могут найти применение в преобразователях напряжения, измерительных приборах, ЭМИ и многих других радиотехнических устройствах.

Автор: А.Игнатенко, г.Екатеринбург

Смотрите другие статьи раздела Музыканту.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Преимущества апельсинового сока перед свежими фруктами 13.01.2025

Апельсиновый сок - один из самых популярных напитков во всем мире, ассоциируемый с пользой для здоровья и укреплением иммунитета. Однако ученые продолжают изучать, как его свойства соотносятся с эффектами употребления самих свежих апельсинов. Недавние исследования показали, что сок может обладать даже большими преимуществами для организма, чем цельные плоды. Апельсины известны высоким содержанием витамина C, который является важным элементом для поддержания иммунной системы. Кроме того, в их составе присутствуют каротиноиды и флавоноиды, которые оказывают антиоксидантное действие и помогают организму бороться с воспалительными процессами. Один средний апельсин покрывает суточную потребность организма в этом важнейшем витамине. Несмотря на это, исследователи Университета Хоэнхайма в Германии пришли к выводу, что апельсиновый сок может быть более полезным, чем сами плоды. Под руководством доктора Джулиана Ашоффа ученые изучали, как организм усваивает питательные вещества из свежих ...>>

Домашние устройства для майнинга и обогрева от Canaan Inc 13.01.2025

Компания Canaan Inc, лидер в производстве оборудования для майнинга криптовалют, представила два инновационных устройства - Avalon Mini 3 и Avalon Nano 3S. Эти новые модели открывают возможности для эффективной добычи биткоина в домашних условиях, предлагая при этом дополнительные функции, которые делают их привлекательными для широкого круга пользователей. Avalon Mini 3 выделяется своим уникальным подходом, объединяющим добычу криптовалюты и функцию обогрева. Устройство имеет хешрейт 37,5 Th/s, что позволяет эффективно добывать биткоин, а выделяемое тепло может использоваться для обогрева жилых помещений. Этот подход делает устройство двойного назначения особенно актуальным в холодное время года, помогая снизить затраты на электроэнергию. Управление установкой осуществляется через мобильное приложение, что делает ее использование удобным и интуитивным. Компания подчеркивает экологическую составляющую своего продукта. По словам представителей Canaan, Avalon Mini 3 способствует ум ...>>

Мозг сохраняет старые воспоминания, не вытесняя их новыми 12.01.2025

Новое исследование нейробиологов проливает свет на удивительный процесс, благодаря которому новые воспоминания не замещают старые. Ученые обнаружили, что в мозге млекопитающих процессы формирования новых воспоминаний и закрепления старых происходят в разные моменты, чередуясь во время медленной фазы сна. Хотя исследования проводились на мышах, ученые предполагают, что аналогичные механизмы действуют и у человека, что открывает перспективы лечения таких нарушений памяти, как деменция. Известно, что во время сна мозг активирует воспоминания, способствуя их закреплению. В этом процессе ключевую роль играет гиппокамп - структура мозга, которая воспроизводит воспоминания, передавая их для долгосрочного хранения в неокортекс. Активность гиппокампа можно отслеживать по так называемым резким мозговым волнам, которые сигнализируют о воспроизведении определенной информации. Однако долгое время оставалось загадкой, как мозг разделяет новые и старые воспоминания, чтобы избежать их смешивания. ...>>

Случайная новость из Архива

Специальные электроды для работы аккумуляторов при морозе 26.06.2022

Известно, что температуры ниже точки замерзания воды весьма пагубно влияют на основные параметры литий-ионных аккумуляторных батарей. В контексте электрических автомобилей и прочих транспортных средств это означает сокращение дальности поездки, увеличение времени зарядки, проблемы с регенеративными системами торможения и многое другое. Поэтому инженеры и ученые, занимающиеся разработкой новых аккумуляторных батарей, уделяют большое внимание не только вопросам увеличения их емкости, но и обеспечению бесперебойной работы в условиях экстремальных температур.

Некоторые из автопроизводителей, в частности компания Ford, оборудуют батареи своих автомобилей датчиками температуры и нагревателями, которые удерживают температуру батареи в допустимых пределах. При этом, часть энергии батарей уходит на их подогрев, что снижает дальность поездки электрического автомобиля. Другие изготовители батарей используют специальные электролиты, способные работать при температурах ниже нуля.

В этой же области работает группа, в состав которой входят ученые из нескольких китайских научных учреждений. Они провели исследования, результаты которых показали, что одним из уязвимых компонентов батареи, ответственный за потерю емкости при понижении температуры, является анод, один из двух электродов батареи. Как правило, аноды изготавливаются из графита, имеющего плоскую гладкую поверхность. Поэтому китайские ученые начали экспериментировать с различными альтернативными вариантами и, в конце концов, они наткнулись на весьма многообещающее решение.

Ученые взяли композитный материал ZIF-67 (cobalt-containing zeolite imidazolate framework) и нагрели его до высокой температуры, в результате чего образовались 12-сторонние углеродные наносферы. Эти крошечные структуры имеют очень развитую поверхность, кроме этого, они обладают превосходной электропроводностью. Спрессовав полученный материал, исследователи изготовили анод для батареи в форме монеты с литиево-металлическим катодом.

Проведенные эксперименты показали, что созданная батарея обеспечивает стабильные характеристики при заряде и разряде в диапазоне температур от 25 до -20 градусов Цельсия. При температурах ниже нуля емкость батареи все же падает, но незначительно, до 85,9 процента от первоначальной емкости, что несравнимо с аналогичным показателями традиционных литий-ионных батарей. И даже при температуре в -35 градусов Цельсия батарея с новым анодом оказалась способной принять заряд и практически полностью отдать его в процессе разрядки.

Ученые считают, что внедрение результатов их работы способно значительно расширить функциональность работы литий-ионных аккумуляторов в условиях экстремальной окружающей среды. А выгоду с этого могут поиметь не только электрические автомобили, но и беспилотники различного назначения, космические аппараты и многое другое.

Другие интересные новости:

▪ Открыт принципиально новый способ охлаждения

▪ STM32L4P5/Q5 - семейство STM32L4+ в малогабаритных корпусах

▪ Пластырь против облысения

▪ Секреты домашних прогулок кошек

▪ Искусственный синтез белков

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Медицина. Подборка статей

▪ статья Блудница вавилонская. Крылатое выражение

▪ статья Когда человек начал использовать газ? Подробный ответ

▪ статья Старинные русские единицы измерения. Советы туристу

▪ статья Пахучие вещества. Простые рецепты и советы

▪ статья Микросхемы. Импульсный усилитель мощности звуковой частоты TDA8925. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025