Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мелодический сигнализатор на микросхемах УМС. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Музыканту

Комментарии к статье Комментарии к статье

Об использовании микросхем серии УМС в электромузыкальных инструментах, автоматах и игрушках рассказывалось в нашем журнале неоднократно. В частности, в подборке материалов "На микросхемах УМС" ("Радио", 1995, № 12) авторы поделились опытом улучшения звучания электромузыкальных автоматов, конструирования квартирных звонков с питанием от сети, устранения недостатков, свойственных некоторым микросхемам этой серии. Автор публикуемой статьи продолжает разговор на эту тему.

Число фрагментов музыкальных произведений, записанных в память каждой из микросхем серии УМС, обычно не превышает пяти. Однако в мелодическом сигнализаторе, о котором идет речь в статье, можно использовать не одну, а несколько таких микросхем, причем с неповторяющимися мелодиями. Это позволит расширить их набор.

Схема одного из вариантов такого ЭМИ (без усилителя ЗЧ) показана на рис. 1. В нем - восемь микросхем УМС (например, УМС-7, УМС-08 и др.) с записанными в их память различными мелодиями. Выбор микросхем осуществляется произвольно" а выбор мелодии внутри каждой из них производится по кольцу. При нажатии на пусковую кнопку SВ1 проигрывается мелодия, всякий раз отличная от предыдущей.

Мелодический сигнализатор на микросхемах УМС
(нажмите для увеличения)

Цифровая часть сигнализатора состоит из формирователя импульса случайного выбора мелодии, собранного на элементах DD1.1, DD1.2 и интегральном таймере DА1, узла перебора музыкальных синтезаторов DD6-DD13, образованного

элементами микросхемы DD2, счетчиком DD3 и мультиплексором DD4, а также генератора тактовой частоты, выполненного на элементах DD1.3,DD1.4 с кварцевым резонатором ZQ1 и D-триггере DD5.

В исходном состоянии (режим ожидания), когда на микросхемы устройства подано напряжение источника питания, генератор перебора музыкальных синтезаторов вырабатывает короткие, длительностью около 10 мс, положительные импульсы, следующие с частотой, равной примерно 1 Гц, которые подсчитывает счетчик DD3 с коэффициентом пересчета 8. При этом на входах 1,2,4 (выводы 11, 10, 9) мультиплексора DD4

присутствует меняющийся код, но коммутация его аналогового входа А (вывод 3) с выходами Х0-Х7 (выводы 13,14,15,12,1, 5,2,4) не происходит, так как на входе разрешения S (вывод 6) присутствует запрещающий сигнал высокого уровня.

При однократном нажатии на кнопку SВ1 "Пуск" таймер DА1 формирует положительный импульс длительностью 5... 6с, который инвертируется элементом DD1.2 и далее поступает на вход 9 элемента DD2.3 и вход S мультиплексора. Этот импульс запрещает прохождение счетных импульсов на вход С (вывод 1) счетчика DDЗ и одновременно разрешает коммутацию аналогового входа микросхемы DD4 (вывод 3) с одним из восьми ее выходов Х0-Х7.

Случайный выбор одного из аналоговых выходов мультиплексора обусловлен случайным по времени моментом нажатия кнопки SВ1. В результате на вывод 13 одного из музыкальных синтезаторов подается напряжение 1,5 В в течение 5...6 с - интервала времени, необходимого для проигрывания выбранной мелодии. Одновременно фронтом импульса этого сигнала происходит предварительный выбор мелодии, которая будет проигрываться при следующем случайном обращении к тому же музыкальному синтезатору. Эту операцию реализует цепь задержки R11С7. С выходов микросхем DD6-DD13 последовательность частот выбранного музыкального фрагмента через развязывающие диодыVDЗ-VD10 поступает на вход оконечного усилителя колебаний звуковой частоты.

По окончании выходного импульса таймера DАЗ цифровая часть сигнализатора переключается в исходное состояние, но выбранная мелодия будет доиграна до конца.

Тактирование музыкальных синтезаторов осуществляется импульсами частотой 50 кГц, получаемой делением частоты кварцованного генератора (100 кГц) на 2. Завышенная, по сравнению с паспортной - 32 768 Гц, тактовая частота выбрана с целью уменьшения времени проигрывания наиболее длительных фрагментов музыкальных мелодий.

Схема усилителя ЗЧ сигнализатора приведена на рис. 2. Подробно останавливаться на нем нет смысла, так как подобные усилители уже описывались в "Радио" и, думается, читателям хорошо знакомы.

Мелодический сигнализатор на микросхемах УМС

К элементной базе устройства особых требований не предъявляется. Пусковая кнопка SВ1 может быть типа КМ, кварцевый резонатор ZQ1 на частоту 100 кГц, диоды - любые из серий КД522, КД521, КД503. Статический коэффициент передачи тока базы транзистора VT1 усилителя ЗЧ должен быть не больше 90, иначе может произойти переполюсовка оксидного конденсатора С2 и выход его из строя. Транзистор КТ815Б VT2) заменим на ГТ404Б, а КТ814Б (VTЗ) - на ГТ402Б. Динамическая головка ВА1 - любая мощностью 1...3 Вт со звуковой катушкой сопротивлением 4...8 Ом.

Сигнализатор собран в корпусе абонентского громкоговорителя методом навесного монтажа. Микросхемы УМС установлены в контактные панельки - для их быстрой замены. При значительной длине проводов, идущих от пусковой кнопки, их, во избежание ложных срабатываний от сетевых наводок, следует заключить в экранирующую оплетку и соединить ее с общим проводом устройства.

Питание сигнализатора осуществляется от сети через трансформатор, обеспечивающий на вторичной обмотке переменное напряжение 7,5...8 В при токе нагрузки до 100 мА. Его цифровая часть питается стабилизированным напряжением 5 В (использован интегральный стабилизатор КР142РН5А), а усилитель ЗЧ-нестабилизированным напряжением 9... 10 В непосредственно от выпрямителя. Максимальный ток, потребляемый цифровой частью, - 12... 15 мА, а усилителем ЗЧ-до 70 мА.

Налаживают устройство следующим образом. По окончании монтажа микросхемы УМС в панельки пока не вставляют. После включения питания подбором резистора R4 устанавливают на выводе 3 мультиплексора [DD4) напряжение, равное 1,5... 1,6 В. Затем подбором резистора R10 устанавливают на выводах 8 панелек музыкальных синтезаторов уровень тактовых импульсов в пределах 0,4...0,5 В. При нажатии на кнопку SВ1 контролируют длительность импульса на выводе 3 таймера DА1. Ее длительность можно изменять подбором резистора R2 (или конденсатора С1), но она не должна быть меньше 4...5 с. Далее в панельки микросхем DD6-DD13 устанавливают музыкальные синтезаторы и испытывают работу устройства в целом.

Для деления частоты на два вместо D-триггера DD5.1 целесообразно использовать вторую половину микросхемы DD3.

Генератор на элементах DD2.1 и DD2.2 не обязательно должен выдавать короткие импульсы с частотой 1 Гц, Можно исключить диоды VD1. VD2, резисторы R5 и R7, а емкость конденсатора С5 уменьшить до 1000...5100 пФ.

Входы всех неиспользуемых элементов следует соединить с общим или плюсовым проводом источника питания.

Общее число микросхем можно еще сократить на одну, если сигнал с выхода элемента DD 1.2 подать в качестве запрещающего на вход CP (вывод 2) микросхемы DD3. При этом импульсы на вход CN (вывод 1) можно подавать с выхода генератора на элементах DD2.1, DD2.2 без элементов DD2.3, DD2.4

Автор: П.Редькин, г.Ульяновск

Смотрите другие статьи раздела Музыканту.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Печать клавиатуры на бумаге 08.09.2020

Ученые из Университета Пердью (США) разработали простой процесс печати, который превращает бумажные листы из записной книжки в клавиатуру, интерфейс музыкального плеера, а также может сделать упаковку для еды интерактивной.

Новый метод позволяет сделать бумагу водоотталкивающей - за счет покрытия из высокофторированных молекул. Для бумаги также не страшны масло и пыль. Это омнифобное покрытие позволяет печатать несколько слоев схем на бумаге. При этом чернила не размазываются между слоями.

Кроме того, у бумажного электронного устройства автономное питание. Ему не требуется никаких внешних аккумуляторов, так как они получают энергию от контакта с пользователем.

Технология совместима с традиционными крупномасштабными процессами печати, поэтому превратить обычный картон или бумагу в интеллектуальную упаковку или интеллектуальный интерфейс можно очень просто и быстро. Авторы работы надеются, что такую "умную" бумагу можно использовать для упаковки пищевых продуктов или посылок: с ее помощью можно проверять, безопасна ли еда для употребления, на ней можно подписывать посылку, лишь проведя пальцем по коробке.

Также простые листы из записной книжки могут быть преобразованы в интерфейсы музыкального проигрывателя, чтобы пользователи могли выбирать песни, воспроизводить их и регулировать громкость.

Другие интересные новости:

▪ Клыкач дальнего плавания

▪ Человека вычислят по радиоволнам

▪ МФУ Stylus Photo RX600

▪ Настольная акустическая система Logitech MX Sound

▪ Аналоговый операционный усилитель из 2D-транзисторов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Заводские технологии на дому. Подборка статей

▪ статья Кох Роберт. Биография ученого

▪ статья Как императорские пингвины кооперируются, чтобы согреться? Подробный ответ

▪ статья Инженер по патентной и изобретательской работе. Должностная инструкция

▪ статья Пропорциональное управление вентилятором охлаждения двигателя автомобиля. Энциклопедия радиоэлектроники и электротехники

▪ статья Восстановление батареи электродрели. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025