Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Частотомер-генератор-часы на МК АТ89S8252. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки

Комментарии к статье Комментарии к статье

Предлагаемый прибор, помимо измерения частоты и периода сигналов, способен считать число входных импульсов, генерировать прямоугольные импульсы, а также выполнять функции часов с календарем и пятипрограммным будильником.

Устройство, схема которого изображена на рис. 1, позволяет измерять частоту периодических сигналов с уровнями ТТЛ до 110 МГц, производить счет входных импульсов, измерять период входных сигналов, вырабатывать сигнал прямоугольной формы со скважностью 2 и частотой от 1 Гц до 3 МГц, отображать текущее время, день недели, число, месяц, год, а также работать в качестве будильника. Ток, потребляемый прибором от источника питания напряжением 5 В ±10 %, не превышает 30 мА (при выключенной подсветке индикатора).

Частотомер-генератор-часы на МК АТ89S8252

Основа прибора - микроконтроллер (МК) фирмы ATMEL AT89S8252. В его состав входят ПЗУ объемом 8 Кбайт, электрически стираемое ППЗУ объемом 2 Кбайт, ОЗУ объемом 256 байт, четыре порта ввода/вывода, три таймера/счетчика (Т/СО-Т/С2), сторожевой таймер, тактовый генератор и другие узлы.

При использовании Т/С в качестве счетчика внешних импульсов частота счета не может быть более 1/24 частоты тактового генератора. Увеличить частоту счета можно, например, включив на входе быстродействующий делитель, однако это требует введения узлов коммутации. В описываемом устройстве для увеличения частоты счета на входе используются быстродействующие счетчики серии КР1554, благодаря чему частота счета возрастает в 256 раз и теоретически может достигать 128 МГц (с кварцевым резонатором на частоту 12 МГц). При использовании микросхем КР1554ИЕ18 (DD2, DD3) максимальная частота равна 110 МГц.

После подачи питания на входе 9 МК DD1 формируется сигнал сброса, длительность которого определяется параметрами цепи R1C3. Диод VD1 служит для быстрой разрядки конденсатора C3 после отключения питания.

В начале выполнения программы производится настройка дисплея HG1. При этом происходит очистка его буфера, запрещается отображение курсора и мигания. Для уменьшения числа линий ввода/вывода, требуемых для записи информации в дисплей, размер шины устанавливается равным 4 битам.

Затем задаются режимы работы Т/С, разрешаются необходимые прерывания и восстанавливаются режим работы и частота генератора, которые были перед предшествующим выключением прибора. Во всех режимах Т/СО работает в качестве таймера. Он запрограммирован таким образом, что его переполнение и прерывание от него происходят 50 раз в секунду. В процессе обработки прерывания происходит опрос клавиатуры, а также вырабатываются образцовые сигналы для работы прибора в режиме частотомера.

Сброс счетчиков DD2, DD3 осуществляется синхронно по фронту сигнала на входе С при уровне лог. 0 на входе R. Это обстоятельство диктует противоречивые требования к длительности сигнала сброса. С одной стороны, для увеличения скорости счета она должна быть достаточно малой, с другой - при такой длительности может не произойти сброс при низкой частоте входного сигнала. Для устранения этого противоречия в данном приборе от сигнала сброса было решено отказаться совсем. После каждого измерения состояния счетчиков запоминаются и при последующем измерении вычитаются из полученного результата.

Режимы работы Т/С1 зависят от режима работы прибора и описаны ниже.

Часы-будильник выполнены на микросхеме DD4. Она содержит все узлы, необходимые для счета часов, минут, секунд, дней недели, числа, месяца и года. В ней имеется также ОЗУ объемом 56 байт, доступных для записи и чтения. При подключенном элементе G1 (например, CR2032) микросхема может работать до 10 лет, сохраняя в памяти все записанные данные. Требуемую точность хода часов устанавливают подстроечным конденсатором С4, контрастность выводимой на дисплей информации - подстроечным резистором R5. Кнопка SB 17 служит для включения светодиодной подсветки дисплея в темное время суток.

В режим измерения частоты прибор переводят нажатием на кнопку "F", измерения периода - на кнопку "Р", генератора - на кнопку "G". Этими же кнопками при нажатой кнопке "S" включают режимы соответственно счета входных импульсов, часов и будильника. Звуковой сигнал подается излучателем BQ1 как при нажатии на кнопку, так и при срабатывании будильника. Выключение сигнала, выдаваемого при нажатии на кнопку, осуществляется отсоединением вывода 4 микросхемы DD1, а сигнала, звучащего при срабатывании будильника, - вывода 3.

Рассмотрим работу прибора в различных режимах более подробно.

В режим измерения частоты устройство переходит при включении питания, а также, как отмечалось, после нажатия на кнопку SB13 ("F"). В этом режиме Т/С1 запрограммирован на работу в качестве счетчика входных импульсов. По истечении 1 с результат счета выводится на верхней строке дисплея (рис. 2,а). Одновременно рассчитывается период сигнала и результат выводится на нижней строке.

Частотомер-генератор-часы на МК АТ89S8252

Иногда, например, при настройке генератора с плавной перестройкой на определенную частоту удобно проводить измерение не один раз в секунду, а чаще. В данном приборе предусмотрен режим, когда измерение проводятся в 10 раз чаще (каждые 0,1 с). Результат измерения выводится на дисплей пять раз в секунду. Разрешающая способность в этом случае уменьшается до 10 Гц. Переход в этот режим производится нажатием кнопки SB12 ("R"). При этом вместо последней цифры измеренного значения частоты выводится знак "*". Для возвращения в обычный режим измерения частоты нажимают кнопку SB8 ("В").

Время реакции на прерывание зависит от выполняемой команды и может достигать нескольких микросекунд. Для устранения возникающей по этой причине погрешности МК после выполнения текущих действий переводится в режим с пониженным энергопотреблением. В этом режиме процессор останавливается, однако все периферийные устройства продолжают функционировать. При возникновении прерывания выполняются все необходимые действия и МК снова переводится в режим пониженного энергопотребления. Время реакции на прерывание в этом случае всегда одинаково и легко учитывается при формировании временных интервалов.

В режиме измерения периода таймер/счетчик Т/С1 запрограммирован на счет импульсов, поступающих с внутреннего делителя. Частота их следования равна V12 частоты генератора, т. е. 1 МГц. Разрешение счета осуществляется с входа INT1 (выв. 13) DD1: при лог. 1 на этом входе счет импульсов разрешен, при лог. 0 - запрещен. В момент перепада уровня с 1 на 0 вырабатывается прерывание, в процессе обработки которого результат счета выводится на нижней строке дисплея (рис. 2,б). Одновременно рассчитывается частота сигнала (с точностью до тысячных долей) и результат выводится на верхней строке дисплея. Подавать на вход прибора сигнал частотой более 10 кГц не рекомендуется, так как обработка прерывания со входа INT1 будет занимать практически все время и на обработку результата и опрос клавиатуры не останется времени.

В режиме счета входных импульсов Т/С1 также запрограммирован для работы в качестве счетчика внешних импульсов. Вывод результата счета (рис. 2,в) на экран дисплея производится 50 раз в секунду. Нажатием на кнопку SB8 ("В") при необходимости останавливают счет импульсов (в этом случае знак ">" гаснет). Повторным нажатием на кнопку SB8 счет возобновляют. Для обнуления показаний счетчика используют кнопку SB12 ("R"). Необходимо учитывать, что реакция на нажатие любой кнопки наступает через 100 мс (время, необходимое для подавления дребезга контактов).

Значение частоты генерируемых импульсов вводят с помощью цифровых кнопок "0"-"9". Нажатие на кнопку SB8 ("В") приводит к удалению крайней правой цифры. В верхней строке индикатора (рис. 2,г) выводится набираемая частота, в нижней - реальная частота генератора, которая определяется по формуле 3000000/Т (Т изменяется от 1 до 65535). Таким образом, набрав, например, число 55000, реально получим 55555.555 (3000000/54). При нажатии кнопки SB12 ("R") происходит смена частоты генератора.

При частоте от 46 Гц до 3 МГц Т/С2 работает в режиме генератора. Его выход подключен к выводу 1 DD1. Прерывания при переполнении Т/С2 запрещены. На более низких частотах (от 1 до 45 Гц) Т/С2 используется в качестве таймера, при этом прерывания разрешены. Их частота зависит от заданной частоты генератора и лежит в пределах 16...90 Гц. В интервале 8...45 Гц производится инвертирование сигнала на выводе Р1.0 каждый раз, когда Т/С2 переполняется (частота выходного сигнала в два раза ниже частоты прерываний). При частотах 1...7 Гц инвертирование сигнала происходит 2, 3, 5 или 8 раз в зависимости от частоты. Прерывание от Т/С2 является низкоприоритетным, так как в ином случае возрастет погрешность при работе прибора в режиме частотомера. В связи с этим период выходного сигнала может незначительно (на единицы микросекунд) отличаться от расчетного значения.

Сигнал на выходе генератора присутствует независимо от режима работы устройства. При задании частоты 0 Гц генератор выключается.

Текущее время устанавливают кнопками "1" (часы), "2" (минуты), "3" (обнуление секунд), "4" (день недели), "5" (число), "6" (месяц) и "7" (год) при нажатой кнопке "В" (если показания необходимо увеличить) или "R" (если их необходимо уменьшить). Вид дисплея в режиме часов показан на рис. 2,д.

Будильников в описываемом приборе пять. Для каждого из них можно задать час, минуту и день недели. Переключают будильники нажатием на кнопку "0". Время срабатывания вводят аналогично описанному выше для установки часов. День недели устанавливают кнопками "3"-"9" ("3" - понедельник, "4" - вторник, ... "9" - воскресенье). При повторном нажатии кнопки обозначение соответствующего дня на дисплее пропадает. Примеры установки будильников показаны на рис. 2,е-з. В первом случае сигнал будильника 1 будет подаваться в будни в 6 ч 30 мин, во втором (будильник 2) - в выходные дни в 8 ч 00 мин, в третьем (будильник 3) - ежедневно в 18 ч 42 мин. Следует учесть, что будильники сработают только в том случае, если прибор находится в режиме часов. Выключить звуковой сигнал можно нажатием на любую кнопку (кроме, конечно, SB17).

Таблица с кодами "прошивки" ПЗУ МК в hex-формате

Несколько слов о деталях. Микросхемы КР1554ИЕ18 заменимы их аналогами из серий К555, КР1533, а при соответствующем изменении схемы и другими счетчиками серий К555, КР1533, К531, КР1554. В зависимости от примененных счетчиков максимальная частота счета будет находиться в пределах 20... 128 МГц. Вместо указанного на схеме допустимо использовать индикатор DV16252. Назначение его выводов такое же, как у DV16230S1FBLY/R, необходимо только поменять местами выводы питания 1 и 2.

Откалибровать прибор можно несколькими способами.

1. Переключив прибор в режим измерения частоты, подать на вход сигнал известной частоты и подстроечным конденсатором С1 установить на индикаторе это значение. Чем выше частота входного сигнала, тем точнее будет настроен прибор.

2. Подсоединив параллельно входу прибора образцовый частотомер и перейдя в режим измерения частоты, подать на вход сигнал. Изменяя емкость конденсатора С1, добиться того, чтобы показания приборов совпали. Также как и в первом случае, чем выше частота входного сигнала, тем точнее можно настроить прибор.

3. Переключив прибор в режим измерения периода, подать на вход сигнал известной частоты и конденсатором С1 установить требуемое значение. Чем больше период входного сигнала, тем точнее настройка прибора. При калибровке таким способом удобно использовать сигнал частотой 1 Гц с электронных часов.

4. Установив на выходе генератора частоту 3 МГц, подать сигнал на вход образцового частотомера. Изменяя емкость конденсатора С1, установить частоту 3 МГц.

Автор: А.Пискаев, г.Орел

Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Адаптивные фары следят за глазами водителя 31.07.2024

Компания Ford, один из лидеров мирового автопрома, подала заявку на патент новой технологии адаптивных фар, которые будут следовать за взглядом водителя. В соответствии с документами, опубликованными Управлением по патентам и товарным знакам США (USPTO), эти фары смогут менять направление света в зависимости от того, куда смотрит водитель.

Современные фары реагируют на движение руля, что позволяет освещать повороты, но не всегда эффективно на прямых участках дороги. Новые адаптивные фары Ford будут более точными и смогут следовать за взглядом водителя, освещая те участки дороги, куда он смотрит. Это поможет лучше освещать боковые части дороги, улучшая безопасность и позволяя раньше замечать препятствия и обочины.

Особенно полезной эта система будет на многополосных дорогах, где обычные фары могут не заметить мелкие объекты, такие как небольшие животные. Фары, следящие за взглядом водителя, смогут их вовремя обнаруживать, что значительно повысит безопасность движения.

Для реализации этой системы Ford планирует использовать технологию отслеживания движения глаз водителя. Система будет учитывать направление взгляда и головы водителя, чтобы избежать ложных срабатываний, когда водитель просто двигает головой, но продолжает смотреть в том же направлении. Датчики будут проверять, направлен ли взгляд действительно на дорогу через лобовое стекло, и только тогда фары будут менять свое направление.

Хотя идея отслеживания взгляда водителя для управления фарами не нова, ее успешное внедрение станет значительным шагом вперед в области автомобильных технологий. В 2015 году компания Opel, тогда принадлежавшая General Motors, объявила о разработке аналогичной технологии. В Европе такие инновации могут быть внедрены быстрее благодаря более гибким правилам использования современных матричных фар, в отличие от США, где эти правила были обновлены относительно недавно.

Новаторская технология адаптивных фар Ford может значительно улучшить безопасность на дорогах, делая ночное вождение более комфортным и безопасным. Это еще один пример того, как современные технологии могут улучшить повседневную жизнь и безопасность водителей.

Другие интересные новости:

▪ Беззеркальная камера X-Pro3

▪ Мобильный фотоаппарат

▪ Аккумуляторные аноды из крабовых панцирей

▪ Моментальное мороженое

▪ Цифровой холодильник

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дозиметры. Подборка статей

▪ статья Всё новое - это хорошо забытое старое. Крылатое выражение

▪ статья Кто и когда научил весь мир есть в ресторанах по русской системе? Подробный ответ

▪ статья Топор. Советы туристу

▪ статья Метроном. Энциклопедия радиоэлектроники и электротехники

▪ статья Замороженная вода. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026