Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Микроконтроллерный регулятор частоты вращения коллекторного электродвигателя. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

Во многих приводах, в частности бытовых электроприборов, широко применяются коллекторные электродвигатели с последовательным возбуждением. Известны многочисленные варианты регуляторов частоты вращения таких двигателей с использованием управляемых выпрямителей на тиристорах (см., например, книгу "Тиристоры. Технический справочник"/Пер. с англ. В. А. Лабунцова и др. - М.: Энергия, 1971).

Применение в указанных устройствах микроконтроллеров (МК) с реализацией основных функций управления электроприводом на программном уровне открывает качественно новые возможности. Регулятор при этом получается достаточно универсальным с возможностью настройки на управление различными вариантами электроприводов или других нагрузок изменением записанной в памяти МК программы.

В статье описывается разработанный авторами вариант такого регулятора на базе МК PIC16F84 фирмы Microchip Technology.

В предлагаемом устройстве использован импульсный метод регулирования напряжения в цепях постоянного тока, получивший широкое распространение, в частности, в электроприводе транспортных средств [1].

Суть метода заключается в том, что напряжение на двигатель подается импульсами с большой частотой следования посредством бесконтактного ключевого элемента. В течение импульса продолжительностью tи (рис. 1) к электродвигателю приложено полное напряжение источника питания U и ток в цепи двигателя нарастает, а в течение паузы tn напряжение отключено, а ток под действием ЭДС самоиндукции постепенно спадает, замыкаясь через цепь блокирующего диода. Среднее значение напряжения Ucp на зажимах электродвигателя, а следовательно, и его частоту вращения регулируют изменением коэффициента заполнения К3, равного отношению длительности импульса tи к периоду коммутации Т=tи + tn: UCP = K3U; K3 = tи /T. (1)

Микроконтроллерный регулятор частоты вращения коллекторного электродвигателя

Для уменьшения амплитуды пульсаций тока и расширения диапазона регулирования применено широтно-частотное управление ключевым элементом с одновременным изменением продолжительности периода коммутации согласно соотношению Т = Тмин/4К3(1-К3), (2) где Тмин - минимально допустимое время коммутации, определяемое характеристиками ключевого элемента и быстродействием микроконтроллера; в данной случае Тмин принято равным 2,5 мс.

Для демонстрации возможностей микроконтроллерного управления электроприводом в предлагаемом устройстве реализован следующий набор выполняемых функций:

- регулирование частоты вращения изменением коэффициента заполнения К3 в интервале 0...100 % с шагом 2 %. Механическая характеристика электропривода (зависимость частоты вращения от момента на валу) при этом мягкая: с ростом нагрузки частота вращения снижается, что защищает электродвигатель и источник питания от перегрузок;

- поддержание заданной частоты вращения с точностью ±5 % с использованием принципа замкнутого управления по отклонению: фактическое значение частоты вращения сравнивается с заданным, и при наличии отклонения программно изменяется К3 до устранения возникшего отклонения;

- изменение направления вращения вала (реверс) электродвигателя;

- формирование сигнала на включение тормозного элемента при остановке привода;

- автоматическое отключение электродвигателя по сигналам датчиков аварийного режима (при использовании таковых), а также при сбоях в выполнении программы;

- возможность управления двумя электродвигателями с временным сдвигом импульсов питающего напряжения;

- учет и хранение в энергонезависимой памяти МК информации о суммарном времени работы привода;

- визуальная индикация выбранного алгоритма управления (со стабилизацией частоты вращения или без нее) и направления вращения, а также величин коэффициента заполнения, заданной и фактической частот вращения.

В конкретных применениях некоторые из названных функций могут не использоваться.

Принципиальная схема устройства управления электродвигателем изображена на рис. 2. Его основа - МК DD1, работающий на тактовой частоте 10 МГц. Органами управления являются кнопки SB1 ("Вперед"), SB2 ("Стоп") и SB3 ("Назад"), подсоединенные к разрядам RB0 - RB2 порта В МК. Параллельно кнопке SB2 при необходимости можно подключить выход датчика тока нагрузки, который при превышении установленного токового порога будет отключать привод от источника питания.

Микроконтроллерный регулятор частоты вращения коллекторного электродвигателя
(нажмите для увеличения)

В качестве ключевого элемента применен мощный составной транзистор КТ834В (VT2). Благодаря большому коэффициенту передачи тока базы управление им осуществляется непосредственно напряжением с выхода RB4 порта В через токоограничительный резистор R5.

Программой управления предусмотрена возможность одновременного управления вторым электродвигателем с подсоединением входа аналогичного ключевого элемента к выводу RB5. При этом с целью уменьшения пульсаций тока в цепи источника импульсы напряжения для второго двигателя формируются с временным сдвигом, равным продолжительности импульса tи, как показано на рис. 1, а и б.

В качестве ключей в устройстве можно применить мощные полевые или гибридные силовые транзисторы с подключением цепей управления непосредственно к выводам МК [2], что позволяет использовать регулятор в силовых электроприводах мощностью до сотен киловатт, например, в электрифицированных транспортных средствах.

Реверс электродвигателя осуществляется изменением направления тока в обмотке возбуждения электродвигателя LM1 с помощью переключающих контактов реле К1. Его обмотка включена в коллекторную цепь транзистора VT1, управляемого напряжением с выхода RB3 МК.

В регуляторе применено реле РЭН18 (паспорт РХ4.564.505) с четырьмя переключающими контактами (для повышения надежности в каждой из групп К1.1 и К1.2 параллельно соединены по два контакта). Переключение контактов происходит при обесточенном электродвигателе (К3 = 0), что существенно снижает требования к их коммутационной способности.

В зависимости от номинального тока электродвигателя для переключения обмотки возбуждения может потребоваться применение более мощного коммутационного устройства. При управлении нереверсивным электроприводом необходимость в использовании указанных элементов вообще отпадает.

Программой предусмотрено формирование на выходе RB6 МК сигнала, включающего тормозной элемент для быстрой остановки привода при выключении либо для ограничения частоты вращения в режиме стабилизации при отрицательных нагрузках на валу электродвигателя. Если такого элемента нет, указанный сигнал просто не используют.

На вывод RB7 поступают импульсы от фотоэлектрического датчика частоты вращения. Он состоит из излучающего диода ИК диапазона VD5, фотодиода VD6, усилителя на транзисторе VT3 [3] и закрепленного на валу электродвигателя диска с двумя диаметрально расположенными отверстиями диаметром около 10 мм. При вращении вала ИК лучи дважды за один оборот на короткое время освещают фотодиод, и в цепи коллектора транзистора VT3 формируются импульсы напряжения. Поступая на вход RB7, они вызывают прерывания МК от порта В. По этим прерываниям МК измеряет время каждого оборота вала двигателя и переводит измеренный интервал в частоту вращения, нормированную относительно номинальной в процентах. В данном случае за 100 % принята частота вращения 3000 мин-1.

Если коэффициент заполнения достиг нуля (отключение питания), а двигатель продолжает вращаться с угловой частотой, превышающей заданную, МК выдает исполнительному устройству команду на торможение через разряд RB6 порта В.

Настроенный на вывод пятиразрядный порт А используется для управления в динамическом режиме семью разрядами цифрового индикатора HG1. Через разряд RA3 на вход С1 двоичного счетчика DD3 поступает информация (в виде соответствующего числа импульсов) об отображаемой десятичной цифре, а через разряд RA4 осуществляется обнуление счетчика. Дешифратор DD4 преобразует двоичный код на выходе счетчика в код семиэлементного индикатора.

С выводов RAO-RA2 МК на адресные входы дешифратора DD2 поступает в двоичном коде номер разряда индикатора HG1, в котором должно отображаться содержимое счетчика DD4. Напряжения на выходах 0 - 6 дешифратора последовательно активизируют соответствующие разряды индикатора, обеспечивая отображение семи цифр, а в интервалах формирования напряжения на неиспользуемом выходе дешифратора индикация отключена и производится загрузка отображаемой цифры в счетчик.

При включении устройства происходит автоматический сброс МК и начинается выполнение записанной в его памяти программы. Производится начальная инициализация МК и управляющей программы: настраиваются предделитель таймера/счетчика и линии портов А и В на ввод/вывод, заносятся необходимые начальные константы в используемые переменные, разрешаются прерывания от таймера/счетчика и от изменения уровня входного напряжения в разряде RB7 порта В. После этих действий программа циклически выводит информацию на цифровой индикатор HG1 и опрашивает состояния кнопок SB1-SB3.

Управление электроприводом может происходить по двум алгоритмам, выбираемым пользователем.

Включен режим стабилизации. Пользователь задает необходимую частоту вращения вала двигателя, а МК несколько раз в секунду измеряет реальную частоту вращения и в зависимости от результата корректирует коэффициент заполнения К3 таким образом, чтобы поддерживать заданную частоту независимо от перепадов питающего напряжения и изменения момента сопротивления на валу электродвигателя.

Для включения режима стабилизации необходимо при остановленном приводе нажать одновременно кнопки SB2 ("Стоп") и SB1 ("Вперед"), для выключения - SB2 ("Стоп") и SB3 ("Назад"). На индикатор в этом режиме выводится информация в формате 5_XXX_YYV, где 5 - признак того, что МК работает в режиме стабилизации, XXX - текущий коэффициент заполнения в процентах от 0 до 100 % с шагом 2 %, сформированный МК для поддержания заданной частоты вращения, a YYY - заданная частота вращения привода в процентах от номинальной в интервале от 0 до 100 % с шагом 5 %.

Режим стабилизации отключен. Пользователь задает необходимый коэффициент заполнения К3. Сигнал обратной связи по частоте вращения не используется. На индикатор выводится информация в формате XXX_YYY, где XXX - измеренная текущая частота вращения вала электродвигателя (измеряется несколько раз в секунду), a YYY - заданный коэффициент заполнения К3 от 0 до 100 % с шагом 2 %.

С помощью встроенного в МК таймера/счетчика программа подсчитывает отработанное двигателем время в минутах, периодически сохраняя его значение в энергонезависимой памяти данных. Соответствующая информация выводится на индикатор после нажатия на кнопку SB2 при остановленном приводе. По достижении счетчиком минут значения 8192 (около 136,5 ч) происходит его обнуление.

Импульсы управления двумя силовыми ключами формируются МК на выходах RB4, RB5 по прерываниям от таймера/счетчика в последовательности, приведенной на рис. 1. Как следствие, при К3 ≤ 0,5 в каждый момент к источнику питания подключен только один из двух двигателей, а при К3 > 0,5 происходит частичное наложение токов потребления электродвигателей, что улучшает режим работы источника питания.

Константы, необходимые для формирования временных интервалов согласно соотношениям (1), (2) и рис. 1, загружаются в таймер из таблицы, размещенной в памяти программ МК. Адрес в таблице определяется по требуемой величине коэффициента заполнения К3.

Коды "прошивки" ПЗУ МК приведены в таблице.

Микроконтроллерный регулятор частоты вращения коллекторного электродвигателя
(нажмите для увеличения)

В случае непредвиденного поведения управляющей программы, вызванного любыми причинами, по команде сторожевого таймера производятся сброс МК и экстренная остановка привода.

Исходный текст программы

При программировании МК в байте конфигурации должна быть указана следующая информация: тип генератора - HS, Watchdog timer и Power-up timer - включены. Программа рассчитана на максимально допустимую частоту вращения 3000 мин -1 Для изменения этого значения нужно задать другие константы в процедуре ее измерения (см. комментарии в тексте исходной программы).

Кроме того, значение максимальной частоты вращения можно ступенчато изменять, варьируя число отверстий в диске таходатчика. Например, для получения максимальной частоты 1500 мин -1 необходимо просверлить четыре отверстия.

Для питания низковольтной части регулятора можно использовать любой маломощный источник, обеспечивающий напряжение 5 В при токе до 150 мА. МК PIC16F84 без изменений в управляющей программе может быть заменен более дешевым PIC16C84, также рассчитанным на работу с тактовой частотой 10 МГц. В качестве цифрового индикатора HG1 можно использовать любой другой с аналогичным управлением. Диоды выпрямительного моста VD3, транзистор VT2 и контакты реле К1 определяют максимальную мощность привода, который может управляться регулятором.

Регулятор был испытан в работе с универсальным коллекторным электродвигателем мощностью 400 Вт. При этом транзистор VT2 был установлен на теплоотводе с общей площадью охлаждающей поверхности около 100 см2.

Правильно собранный из исправных компонентов регулятор при безошибочно запрограммированном МК не нуждается в наладке.

Описанное устройство можно использовать не только для управления частотой вращения электроприводов, но и для поддержания заданных значений других физических параметров, например, температуры в комнате, инкубаторе, бассейне, аквариуме или других объектах. В подобном случае вместо датчика частоты вращения к входу RB7 МК подключают преобразователь температура-частота. Неиспользуемые разряды порта В можно запрограммировать на управление другими внешними устройствами, например, включающими вентиляцию в помещении при перегреве воздуха, освещение и компрессор в аквариуме через определенные интервалы времени и т. п. Все это требует внесения минимальных изменений в программу управления.

Литература

  1. Бирзниекс Л. В. Импульсные преобразователи постоянного тока. - М.: Энергия, 1974.
  2. Энергетическая электроника. Справочное пособие: Пер. с нем./Под ред. В. А. Лабунцова. - М.: Энергоатомиздат, 1987.
  3. Баянов К. Счетчик расхода магнитной ленты. - Радио, 1994, № 5, с. 5-7.

Автор: С.Коряков, Ю.Сташинов, г.Шахты Ростовской обл.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Цифровая рация Xiaomi Digital Walkie Talkie 05.10.2025

Компания Xiaomi представила современное устройство, объединившее классические принципы радиосвязи с возможностями цифровых технологий. Новинка под названием Xiaomi Digital Walkie Talkie демонстрирует, как привычные рации могут быть переосмыслены в духе времени. Устройство оснащено цветным дисплеем диагональю 1,57 дюйма, который отображает список контактов, параметры соединения и даже примерное местоположение собеседника. Такой подход превращает стандартную рацию в компактное средство связи, сочетающее функциональность смартфона и устойчивость профессиональной техники. Одним из ключевых преимуществ стала высокая автономность. Встроенный аккумулятор емкостью 2500 мА·ч обеспечивает до 100 часов работы в режиме ожидания и около 14 часов непрерывных разговоров, что особенно важно в экспедициях, на дальних маршрутах или в зонах, где подзарядка невозможна. Согласно данным портала unionrayo.com, такое время работы выгодно отличает устройство от большинства аналогов. По дальности дейст ...>>

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Случайная новость из Архива

Тонометр со смартфоном 28.11.2013

Специалистами университета Нихон разработан миниатюрный измеритель артериального давления, лишенный привычного манжета. Устройство можно использовать совместно со смартфоном.

Подробности разработки пока не раскрыты, но известно, что измерение построено на анализе отраженного светового сигнала. Для измерения давления палец вставляется в небольшое устройство со светодиодом, фототранзистором и цепями обработки сигнала внутри.

Подключение к смартфону осуществляется по интерфейсу Bluetooth 4.0. Результаты измерения отображаются на экране смартфона приложением для ОС Android. Программа показывает среднее и мгновенное значения систолического и диастолического давления, частоту сердечных сокращений и форму пульсовой волны.

Разработчики рассчитывают наладить выпуск и продажу датчиков в первом полугодии 2014 года.

Другие интересные новости:

▪ 27" 5K монитор Philips Brilliance 275P4VYKEB

▪ Горючее из спитого чая

▪ Новый катализатор для энергетической конверсии

▪ Здоровье человека зависит от деревьев

▪ Фильтр на графене задерживает все, кроме воды

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микрофоны, радиомикрофоны. Подборка статей

▪ статья Капица Петр. Биография ученого

▪ статья Могут ли космонавты плакать? Подробный ответ

▪ статья Поропоро. Легенды, выращивание, способы применения

▪ статья Автоматическое зарядное устройство автомобильных аккумуляторов. Энциклопедия радиоэлектроники и электротехники

▪ статья Универсальный таймер для зарядного устройства. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025