Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Доработка светодиодного фонаря. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

В темное время суток карманный фонарь - незаменимая вещь. Однако имеющиеся в продаже образцы на аккумуляторной батарее с зарядкой от сети вызывают лишь разочарование. Некоторое время после покупки они еще работают, но затем гелевая свинцово-кислотная аккумуляторная батарея деградирует и одной ее зарядки начинает хватать всего лишь на несколько десятков минут свечения. А нередко во время зарядки при включенном фонаре светодиоды перегорают один за другим.

Конечно, учитывая невысокую цену фонаря, можно каждый раз покупать новый, но целесообразнее один раз разобраться в причинах отказов, устранить их в имеющемся фонаре и забыть о проблеме на долгие годы.

Доработка светодиодного фонаря
Рис. 1

Рассмотрим подробно показанную на рис. 1 схему одного из вышедших из строя фонарей и определим ее основные недостатки. Слева от аккумуляторной батареи GB1 здесь расположен отвечающий за ее зарядку узел. Ток зарядки задан емкостью конденсатора С1. Резистор R1, установленный параллельно конденсатору, разряжает его после отключения фонаря от сети. Светодиод HL1 красного цвета свечения подключен через ограничительный резистор R2 параллельно нижнему левому диоду выпрямительного моста VD1-VD4 в обратной полярности. Ток через светодиод протекает в те полупериоды сетевого напряжения, в которых открыт верхний левый диод моста. Таким образом, свечение светодиода HL1 свидетельствует лишь о подключении фонаря к сети, а не об идущей зарядке. Он будет светиться даже при отсутствующей или неисправной аккумуляторной батарее.

Потребляемый фонарем от сети ток ограничен емкостным сопротивлением конденсатора С1 приблизительно до 60 мА. Поскольку часть его ответвляется в светодиод HL1, ток зарядки батарей GB1 получается около 50 мА. Гнезда XS1 и XS2 предназначены для измерения напряжения батареи.

Резистор R3 ограничивает ток разрядки батареи через соединенные параллельно светодиоды EL1-EL5, но его сопротивление слишком мало, и через светодиоды течет ток, превышающий номинальный. Яркость от этого увеличивается незначительно, а скорость деградации кристаллов светодиодов заметно возрастает.

Теперь о причинах перегорания светодиодов. Как известно, при зарядке старого свинцового аккумулятора, пластины которого сульфатировались, возникает дополнительное падение напряжения на его повышенном внутреннем сопротивлении. В результате при идущей зарядке напряжение на выводах такого аккумулятора или их батареи может в 1,5...2 раза превысить номинальное. Если в этот момент, не прекращая зарядки, замкнуть выключатель SA1, чтобы проверить яркость свечения светодиодов, то повышенное напряжение окажется достаточным для значительного превышения текущим через них током допустимого значения. Светодиоды поочередно выйдут из строя. В результате к непригодной к дальнейшей эксплуатации аккумуляторной батарее добавляются сгоревшие светодиоды. Отремонтировать такой фонарь невозможно - запасные батареи в продаже отсутствуют.

Доработка светодиодного фонаря
Рис. 2

Предлагаемая схема доработки фонаря, показанная на рис. 2, позволяет устранить описанные недостатки и исключить вероятность выхода из строя его элементов при любых ошибочных действиях. Она заключается в таком изменении схемы подключения светодиодов к аккумуляторной батарее, чтобы ее зарядка прерывалась автоматически. Это обеспечивается заменой выключателя SA1 на переключатель. Ограничительный резистор R5 подобран таким, что общий ток через светодиоды EL1-EL5 при напряжении батареи GB1 4,2 В равен 100 мА. Поскольку переключатель SA1 использован трехпозиционный, появилась возможность реализовать экономичный режим пониженной яркости фонаря, добавив в него резистор R4.

Индикатор на светодиоде HL1 также переделан. Последовательно с аккумулятором включен резистор R2. Падающее на нем при протекании тока зарядки напряжение приложено к светодиоду HL1 и ограничительному резистору R3. Теперь происходит индикация именно текущего через батарею GB1 тока зарядки, а не просто наличия сетевого напряжения.

Негодная гелевая батарея заменена составленной из трех Ni-Cd аккумуляторов емкостью 600 мА-ч. Продолжительность ее полной зарядки - около 16 ч, причем испортить батарею, не прекратив зарядку вовремя, невозможно, поскольку зарядный ток не превышает безопасного значения, численно равного 0,1 номинальной емкости аккумулятора.

Доработка светодиодного фонаря
Рис. 3

Вместо сгоревших установлены светодиоды HL-508H238WC диаметром 5 мм белого свечения номинальной яркостью 8 кд при токе 20 мА (максимальный ток - 100 мА) и угле излучения 15°. На рис. 3 показана экспериментальная зависимость падения напряжения на таком светодиоде от текущего через него тока. Его значение 5 мА соответствует практически полностью разряженной батарее GB1. Тем не менее яркость фонаря и в этом случае оставалась достаточной.

Переделанный по рассмотренной схеме фонарь успешно работает уже несколько лет. Заметное снижение яркости свечения происходит лишь при почти полной разрядке аккумуляторной батареи. Это как раз и служит сигналом о необходимости зарядить ее. Как известно, полная разрядка Ni-Cd аккумуляторов перед зарядкой повышает их долговечность.

Из недостатков рассмотренного способа доработки можно отметить довольно большую стоимость батареи из трех Ni-Cd аккумуляторов и сложность ее размещения в корпусе фонаря вместо штатной свинцово-кислотной. Автору пришлось разрезать внешнюю пленочную оболочку новой батареи, чтобы более компактно разместить образующие ее аккумуляторы.

Поэтому при доработке еще одного фонаря с четырьмя светодиодами было решено использовать только один Ni-Cd аккумулятор и драйвер светодиодов на микросхеме ZXLD381 в корпусе SOT23-3 diodes.com/datasheets/ZXLD381.pdf. Она при входном напряжении 0,9...2,2 В обеспечивает светодиоды током до 70 мА.

Доработка светодиодного фонаря
Рис. 4

На рис. 4 показана схема питания светодиодов HL1-HL4 с применением этой микросхемы. График типовой зависимости их суммарного тока от индуктивности дросселя L1 приведен на рис. 5. При его индуктивности 2,2 мкГн (использован дроссель DLJ4018-2.2) на каждый из четырех параллельно соединенных светодиодов EL1-EL4 приходится по 69/4=17,25 мА тока, что вполне достаточно для их яркого свечения.

Доработка светодиодного фонаря
Рис. 5

Из других навесных элементов для работы микросхемы в режиме сглаженного выходного тока требуются лишь диод Шоттки VD1 и конденсатор С1. Интересно, что на типовой схеме применения микросхемы ZXLD381 указана емкость этого конденсатора 1 Ф. Узел зарядки аккумулятора G1 такой же, как на рис. 2. Имеющиеся там же ограничительные резисторы R4 и R5 теперь не нужны, а переключателю SA1 достаточно двух положений.

Ввиду малого числа деталей доработка фонаря была выполнена навесным монтажом. Аккумулятор G1 (Ni-Cd типоразмера АА емкостью 600 мАч) установлен в соответствующий держатель. По сравнению с фонарем, доработанным по схеме рис. 2, яркость получилась субъективно несколько меньшей, но вполне достаточной.

Автор: С.Самойлов

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Электроны текут подобно жидкости 20.09.2017

В ходе своих последних экспериментов ученые из Института изучения графена Манчестерского университета обнаружили условия, при которых электроны, двигающиеся по графену, ведут себя весьма необычным способом. Такое специфическое движение электронов дает ученым лучшее понимание физических процессов в электропроводящих материалах, а в недалеком будущем эти самые процессы можно будет использовать при разработке наноэлектронных схем быстрых и высокоэффективных компьютерных чипов следующего поколения.

У большинства металлов электрическая проводимость ограничена количеством дефектов их кристаллической решетки, которые заставляют электроны рассеиваться, ударяясь об них, словно бильярдные шары. Поэтому графен, благодаря его "двухмерной" структуре, проводит электрический ток гораздо лучше любого металла. Кроме того, в некоторых чистых металлах и других материалах с упорядоченной кристаллической структурой, в том числе и в графене, электроны могут без рассеивания преодолевать расстояния, исчисляющиеся микронами, за счет так называемого баллистического движения. Параметры такого движения определяют максимально возможную электрическую проводимость материала, которая называется фундаментальным пределом Ландауэра (Landauer's fundamental limit).

Однако, полученные в ходе экспериментов данные, позволили ученым сделать выводы, что закон, определяющий фундаментальный предел Ландауэра, в среде графена не соблюдается при определенных условиях. А несет за это ответственность один весьма необычный механизм, который имеет непосредственное отношение к относительно новой области физики, называемой электронной гидродинамикой (electron hydrodynamics).

Область электронной гидродинамики появилась в буквально в прошлом году после того, как ученые из Манчестерского университета и других научных организаций продемонстрировали, что при определенной температуре материала двигающиеся в нем электроны начинают сталкиваться друг с другом столь часто, что поток электронов начинает течь, словно поток жидкости, имеющей не самый маленький коэффициент вязкости. А в новых исследованиях ученые показали, что наличие этой вязкой "электронной жидкости" придает материалу более высокую электрическую проводимость, нежели баллистическое движение электронов.

Обнаруженное учеными явление достаточно парадоксально. Ведь при столкновениях электронов они взаимодействуют и рассеиваются, что, по идее, должно ослаблять электрическую проводимость материала. Но увеличение проводимости материала возникает за счет того, что электроны разбиваются на две условные части, подобно потоку воды, текущему в реке. Те электроны, которые двигаются в непосредственной близости от ребер кристаллической решетки, теряют свой импульс и замедляются. Но, одновременно с этим, они выступают в качестве защиты, ограждающей от столкновений электроны, двигающиеся в середине потока. И эти электроны движутся уже по сверхбаллистической траектории внутри "канала", созданного крайними электронами.

"Из школьного курса физики нам известно, что чем беспорядочней структура материала, тем больше его электрическое сопротивление" - рассказывает сэр Андрей Гейм, - "Но в нашем случае беспорядок, вызванный рассеиванием в результате столкновений электронов, уменьшает, а не увеличивает электрическое сопротивление материала. При этом, электроны начинают течь как жидкость и скорость движения этой жидкости превышает скорость движения электронов с такой же энергией в вакууме".

Ученые провели ряд экспериментов, в которых проводимость графена измерялась при различной температуре. Сравнение проводимости чистого графена и легированного графена, который обладает явными металлическими проводниковыми свойствами, позволило ученым с высокой точностью вычислить новую физическую величину, получившую название вязкой проводимости. И что является самым примечательным, собранные экспериментальные данные практически совпали с данными, полученными в ходе расчетов соответствующих математических моделей.

Другие интересные новости:

▪ Диод для защиты высокоскоростных интерфейсов от статического электричества

▪ Дом на штопоре

▪ Сколько динозавров еще не открыто

▪ Надувная печь

▪ Авиалайнер в акульей шкуре

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Технологии радиолюбителя. Подборка статей

▪ статья Пути повышения эффективности трудовой деятельности человека. Основы безопасной жизнедеятельности

▪ статья Насколько опасны метеориты? Подробный ответ

▪ статья Молокан компасный. Легенды, выращивание, способы применения

▪ статья Правила пользования электрической энергией. Энциклопедия радиоэлектроники и электротехники

▪ статья Автомобильный сабвуфер. Часть 1. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025